Chemistry Department and Institute for Polymer Technology, Wuppertal University , Gauss-Strasse 20, D-42119 Wuppertal, Germany.
Acc Chem Res. 2014 Aug 19;47(8):2446-56. doi: 10.1021/ar500141j. Epub 2014 Jul 15.
The future application of single-walled carbon nanotubes (SWNTs) in electronic (nano)devices is closely coupled to the availability of pure, semiconducting SWNTs and preferably, their defined positioning on suited substrates. Commercial carbon nanotube raw mixtures contain metallic as well as semiconducting tubes of different diameter and chirality. Although many techniques such as density gradient ultracentrifugation, dielectrophoresis, and dispersion by surfactants or polar biopolymers have been developed, so-called conjugated polymer wrapping is one of the most promising and powerful purification and discrimination strategies. The procedure involves debundling and dispersion of SWNTs by wrapping semiflexible conjugated polymers, such as poly(9,9-dialkylfluorene)s (PFx) or regioregular poly(3-alkylthiophene)s (P3AT), around the SWNTs, and is accompanied by SWNT discrimination by diameter and chirality. Thereby, the π-conjugated backbone of the conjugated polymers interacts with the two-dimensional, graphene-like π-electron surface of the nanotubes and the solubilizing alkyl side chains of optimal length support debundling and dispersion in organic solvents. Careful structural design of the conjugated polymers allows for a selective and preferential dispersion of both small and large diameter SWNTs or SWNTs of specific chirality. As an example, with polyfluorenes as dispersing agents, it was shown that alkyl chain length of eight carbons are favored for the dispersion of SWNTs with diameters of 0.8-1.2 nm and longer alkyls with 12-15 carbons can efficiently interact with nanotubes of increased diameter up to 1.5 nm. Polar side chains at the PF backbone produce dispersions with increased SWNT concentration but, unfortunately, cause reduction in selectivity. The selectivity of the dispersion process can be monitored by a combination of absorption, photoluminescence, and photoluminescence excitation spectroscopy, allowing identification of nanotubes with specific coordinates [(n,m) indices]. The polymer wrapping strategy enables the generation of SWNT dispersions containing exclusively semiconducting nanotubes. Toward the applications in electronic devices, until now most applied approach is a direct processing of such SWNT dispersions into the active layer of network-type thin film field effect transistors. However, to achieve promising transistor performance (high mobility and on-off ratio) careful removal of the wrapping polymer chains seems crucial, for example, by washing or ultracentrifugation. More defined positioning of the SWNTs can be accomplished in directed self-assembly procedures. One possible strategy uses diblock copolymers containing a conjugated polymer block as dispersing moiety and a second block for directed self-assembly, for example, a DNA block for specific interaction with complementary DNA strands. Another strategy utilizes reactive side chains for controlled anchoring onto patterned surfaces (e.g., by interaction of thiol-terminated alkyl side chains with gold surfaces). A further promising application of purified SWNT dispersions is the field of organic (all-carbon) or hybrid solar cell devices.
单壁碳纳米管 (SWNTs) 在电子 (纳米) 器件中的未来应用与纯净、半导体 SWNTs 的可用性密切相关,最好是在合适的衬底上对其进行定位。商业碳纳米管原料混合物中含有不同直径和手性的金属和半导体管。尽管已经开发了许多技术,如密度梯度超速离心、介电泳和通过表面活性剂或极性生物聚合物分散,但所谓的共轭聚合物包裹是最有前途和强大的纯化和区分策略之一。该过程涉及通过将半柔性共轭聚合物(如聚(9,9-二烷基芴)(PFx)或区域规整的聚(3-烷基噻吩)(P3AT))包裹在 SWNTs 周围来解缠和分散 SWNTs,并伴随着通过直径和手性对 SWNTs 进行区分。由此,共轭聚合物的π-共轭主链与纳米管的二维、类石墨烯的π-电子表面相互作用,最佳长度的可溶性烷基侧链支持在有机溶剂中解缠和分散。对共轭聚合物进行仔细的结构设计,可以选择性地和优先地分散小直径和大直径的 SWNTs 或特定手性的 SWNTs。例如,使用聚芴作为分散剂,表明具有 0.8-1.2nm 直径的 SWNTs 更有利于具有 8 个碳原子的烷基链的分散,而具有 12-15 个碳原子的较长烷基可以有效地与直径增加到 1.5nm 的纳米管相互作用。PF 主链上的极性侧链会产生 SWNT 浓度增加的分散体,但不幸的是,会降低选择性。通过吸收、光致发光和光致发光激发光谱的组合,可以监测分散过程的选择性,从而可以识别具有特定坐标 [(n,m) 指数] 的纳米管。聚合物包裹策略可用于生成仅包含半导体纳米管的 SWNT 分散体。在电子器件的应用中,到目前为止,最常用的方法是直接将此类 SWNT 分散体加工到网络型薄膜场效应晶体管的有源层中。然而,为了实现有前途的晶体管性能(高迁移率和开/关比),似乎需要仔细去除包裹聚合物链,例如通过洗涤或超速离心。通过定向自组装程序可以实现 SWNTs 的更明确定位。一种可能的策略是使用包含作为分散部分的共轭聚合物嵌段和用于定向自组装的第二嵌段的嵌段共聚物,例如与互补 DNA 链特异性相互作用的 DNA 嵌段。另一种策略是利用反应性侧链用于控制锚定到图案化表面上(例如,通过巯基封端的烷基侧链与金表面的相互作用)。纯化后的 SWNT 分散体在有机(全碳)或混合太阳能电池器件领域有另一个有前途的应用。