Takahata N
National Institute of Genetics, Mishima, Japan.
Proc Natl Acad Sci U S A. 1990 Apr;87(7):2419-23. doi: 10.1073/pnas.87.7.2419.
Different alleles undergoing strong symmetric balancing selection show a simple genealogical structure (allelic genealogy), similar to the gene genealogy described by the coalescence process for a sample of neutral genes randomly drawn from a panmictic population at equilibrium. The only difference between the two genealogies lies in the different time scales. An approximate scaling factor for allelic genealogy relative to that of neutral gene genealogy is [square root of S/(2M)].[In[S/(16 pi M2)]]-3/2, where M = Nu and S = 2Ns (N, effective population size; u, mutation rate to selected alleles per locus per generation; s, selection coefficient). The larger the value of square root of S/M (greater than or equal to 100), the larger the scaling factor. These findings, supported by simulation results, allow one to apply the theoretical results of the coalescence process directly to the allelic genealogy. Combined with the trans-species evolution of the major histocompatibility complex polymorphism for which balancing selection is believed to be responsible, allelic genealogy predicts that the number of breeding individuals in the human population could not be as small as 50-100 at any time of its evolutionary history. The analysis appears to contradict the founder principle as being important in recent mammalian evolution.
经历强烈对称平衡选择的不同等位基因呈现出一种简单的谱系结构(等位基因谱系),类似于从处于平衡状态的随机交配群体中随机抽取的中性基因样本的合并过程所描述的基因谱系。这两种谱系之间的唯一区别在于时间尺度不同。相对于中性基因谱系,等位基因谱系的一个近似缩放因子是[S/(2M)]的平方根·[In[S/(16πM²)]]⁻³/²,其中M = Nu且S = 2Ns(N为有效种群大小;u为每个位点每代向选择等位基因的突变率;s为选择系数)。S/M的平方根值越大(大于或等于100),缩放因子就越大。这些得到模拟结果支持的发现,使得人们能够将合并过程的理论结果直接应用于等位基因谱系。结合被认为是由平衡选择导致的主要组织相容性复合体多态性的跨物种进化,等位基因谱系预测在人类进化历史的任何时期,繁殖个体的数量都不可能小到50 - 100。该分析似乎与奠基者原则在近期哺乳动物进化中很重要这一观点相矛盾。