Suppr超能文献

验证一种用于客观且高度自动化的临床图像质量评估的数字乳腺摄影设备模型。

Validation of a digital mammographic unit model for an objective and highly automated clinical image quality assessment.

机构信息

Université de Lorraine, CRAN, UMR 7039, 2 Avenue de la Forêt de Haye, 54516 Vandœuvre-Lès-Nancy, France.

出版信息

Med Eng Phys. 2013 Aug;35(8):1089-96; discussion 1089. doi: 10.1016/j.medengphy.2012.11.001. Epub 2012 Dec 1.

Abstract

In mammography, image quality assessment has to be directly related to breast cancer indicator (e.g. microcalcifications) detectability. Recently, we proposed an X-ray source/digital detector (XRS/DD) model leading to such an assessment. This model simulates very realistic contrast-detail phantom (CDMAM) images leading to gold disc (representing microcalcifications) detectability thresholds that are very close to those of real images taken under the simulated acquisition conditions. The detection step was performed with a mathematical observer. The aim of this contribution is to include human observers into the disc detection process in real and virtual images to validate the simulation framework based on the XRS/DD model. Mathematical criteria (contrast-detail curves, image quality factor, etc.) are used to assess and to compare, from the statistical point of view, the cancer indicator detectability in real and virtual images. The quantitative results given in this paper show that the images simulated by the XRS/DD model are useful for image quality assessment in the case of all studied exposure conditions using either human or automated scoring. Also, this paper confirms that with the XRS/DD model the image quality assessment can be automated and the whole time of the procedure can be drastically reduced. Compared to standard quality assessment methods, the number of images to be acquired is divided by a factor of eight.

摘要

在乳腺 X 线摄影中,图像质量评估必须与乳腺癌指标(如微钙化)的可检测性直接相关。最近,我们提出了一种 X 射线源/数字探测器(XRS/DD)模型,用于进行这种评估。该模型模拟了非常逼真的对比度细节体模(CDMAM)图像,得到的金盘(代表微钙化)检测阈值非常接近在模拟采集条件下拍摄的真实图像的检测阈值。检测步骤是使用数学观察者进行的。本研究的目的是将人类观察者纳入真实和虚拟图像中的圆盘检测过程中,以验证基于 XRS/DD 模型的模拟框架。数学标准(对比度细节曲线、图像质量因子等)用于从统计学角度评估和比较真实和虚拟图像中的癌症指标检测性能。本文给出的定量结果表明,对于使用人类或自动评分的所有研究曝光条件,XRS/DD 模型模拟的图像可用于图像质量评估。此外,本文还证实,使用 XRS/DD 模型可以实现图像质量评估的自动化,并大大缩短整个过程的时间。与标准质量评估方法相比,需要采集的图像数量减少了 8 倍。

相似文献

1
Validation of a digital mammographic unit model for an objective and highly automated clinical image quality assessment.
Med Eng Phys. 2013 Aug;35(8):1089-96; discussion 1089. doi: 10.1016/j.medengphy.2012.11.001. Epub 2012 Dec 1.
4
Contrast-detail phantom scoring methodology.
Med Phys. 2005 Mar;32(3):807-14. doi: 10.1118/1.1862097.
5
Automated analysis of phantom images for the evaluation of long-term reproducibility in digital mammography.
Phys Med Biol. 2007 Mar 7;52(5):1387-407. doi: 10.1088/0031-9155/52/5/012. Epub 2007 Feb 8.
7
A comparative study of computer assisted assessment of image quality index for mammographic phantom images.
Radiat Prot Dosimetry. 2005;116(1-4 Pt 2):620-3. doi: 10.1093/rpd/nci222.
8
Computation of realistic virtual phantom images for an objective lesion detectability assessment in digital mammography.
Med Eng Phys. 2011 Dec;33(10):1276-86. doi: 10.1016/j.medengphy.2011.06.004. Epub 2011 Jul 7.
9
A similarity learning approach to content-based image retrieval: application to digital mammography.
IEEE Trans Med Imaging. 2004 Oct;23(10):1233-44. doi: 10.1109/TMI.2004.834601.
10
Microcalcification detection using cone-beam CT mammography with a flat-panel imager.
Phys Med Biol. 2004 Jun 7;49(11):2183-95. doi: 10.1088/0031-9155/49/11/005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验