Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, CA, USA.
PLoS One. 2012;7(11):e49396. doi: 10.1371/journal.pone.0049396. Epub 2012 Nov 29.
Fishing can trigger trophic cascades that alter community structure and dynamics and thus modify ecosystem attributes. We combined ecological data of sea urchin and macroalgal abundance with fishery data of spiny lobster (Panulirus interruptus) landings to evaluate whether: (1) patterns in the abundance and biomass among lobster (predator), sea urchins (grazer), and macroalgae (primary producer) in giant kelp forest communities indicated the presence of top-down control on urchins and macroalgae, and (2) lobster fishing triggers a trophic cascade leading to increased sea urchin densities and decreased macroalgal biomass. Eight years of data from eight rocky subtidal reefs known to support giant kelp forests near Santa Barbara, CA, USA, were analyzed in three-tiered least-squares regression models to evaluate the relationships between: (1) lobster abundance and sea urchin density, and (2) sea urchin density and macroalgal biomass. The models included reef physical structure and water depth. Results revealed a trend towards decreasing urchin density with increasing lobster abundance but little evidence that urchins control the biomass of macroalgae. Urchin density was highly correlated with habitat structure, although not water depth. To evaluate whether fishing triggered a trophic cascade we pooled data across all treatments to examine the extent to which sea urchin density and macroalgal biomass were related to the intensity of lobster fishing (as indicated by the density of traps pulled). We found that, with one exception, sea urchins remained more abundant at heavily fished sites, supporting the idea that fishing for lobsters releases top-down control on urchin grazers. Macroalgal biomass, however, was positively correlated with lobster fishing intensity, which contradicts the trophic cascade model. Collectively, our results suggest that factors other than urchin grazing play a major role in controlling macroalgal biomass in southern California kelp forests, and that lobster fishing does not always catalyze a top-down trophic cascade.
捕鱼可以引发营养级联,改变群落结构和动态,从而改变生态系统属性。我们结合了刺龙虾(Panulirus interruptus)捕捞量的海胆和大型藻类丰度的生态数据,以及巨型海带林群落中龙虾(捕食者)、海胆(食草动物)和大型藻类(初级生产者)的丰度和生物量模式,以评估以下两个方面:
龙虾、海胆和大型藻类在巨型海带林中的丰度和生物量模式是否表明对海胆和大型藻类存在自上而下的控制;
龙虾捕捞是否引发营养级联,导致海胆密度增加和大型藻类生物量减少。
来自美国加利福尼亚州圣巴巴拉附近八个已知支持巨型海带林的岩石潮间带礁的八年数据,使用三层最小二乘回归模型进行分析,以评估以下两个方面之间的关系:
龙虾丰度与海胆密度;
海胆密度与大型藻类生物量。
这些模型包括礁物理结构和水深。结果表明,随着龙虾丰度的增加,海胆密度呈下降趋势,但几乎没有证据表明海胆控制着大型藻类的生物量。海胆密度与栖息地结构高度相关,尽管与水深无关。为了评估捕鱼是否引发了营养级联,我们汇总了所有处理的数据,以研究海胆密度和大型藻类生物量与龙虾捕捞强度(以拉动的陷阱密度表示)之间的关系程度。我们发现,除了一个例外,在捕捞强度高的地点,海胆仍然更为丰富,这支持了龙虾捕捞释放了对食草动物海胆的自上而下控制的观点。然而,大型藻类生物量与龙虾捕捞强度呈正相关,这与营养级联模型相矛盾。总的来说,我们的结果表明,在加利福尼亚南部的海带林中,除了海胆摄食之外,还有其他因素在控制大型藻类生物量方面发挥着重要作用,而且龙虾捕捞并不总是催化自上而下的营养级联。