Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel.
Acc Chem Res. 2013 Feb 19;46(2):471-82. doi: 10.1021/ar300204y. Epub 2012 Dec 4.
Over the past decades metalloenzymes and their synthetic models have emerged as an area of increasing research interest. The metalloenzymes and their synthetic models oxidize organic molecules using oxometal complexes (OMCs), especially oxoiron(IV)-based ones. Theoretical studies have helped researchers to characterize the active species and to resolve mechanistic issues. This activity has generated massive amounts of data on the relationship between the reactivity of OMCs and the transition metal's identity, oxidation state, ligand sphere, and spin state. Theoretical studies have also produced information on transition state (TS) structures, reaction intermediates, barriers, and rate-equilibrium relationships. For example, the experimental-theoretical interplay has revealed that nonheme enzymes carry out H-abstraction from strong C-H bonds using high-spin (S = 2) oxoiron(IV) species with four unpaired electrons on the iron center. However, other reagents with higher spin states and more unpaired electrons on the metal are not as reactive. Still other reagents carry out these transformations using lower spin states with fewer unpaired electrons on the metal. The TS structures for these reactions exhibit structural selectivity depending on the reactive spin states. The barriers and thermodynamic driving forces of the reactions also depend on the spin state. H-Abstraction is preferred over the thermodynamically more favorable concerted insertion into C-H bonds. Currently, there is no unified theoretical framework that explains the totality of these fascinating trends. This Account aims to unify this rich chemistry and understand the role of unpaired electrons on chemical reactivity. We show that during an oxidative step the d-orbital block of the transition metal is enriched by one electron through proton-coupled electron transfer (PCET). That single electron elicits variable exchange interactions on the metal, which in turn depend critically on the number of unpaired electrons on the metal center. Thus, we introduce the exchange-enhanced reactivity (EER) principle, which predicts the preferred spin state during oxidation reactions, the dependence of the barrier on the number of unpaired electrons in the TS, and the dependence of the deformation energy of the reactants on the spin state. We complement EER with orbital-selection rules, which predict the structure of the preferred TS and provide a handy theory of bioinorganic oxidative reactions. These rules show how EER provides a Hund's Rule for chemical reactivity: EER controls the reactivity landscape for a great variety of transition-metal complexes and substrates. Among many reactivity patterns explained, EER rationalizes the abundance of high-spin oxoiron(IV) complexes in enzymes that carry out bond activation of the strongest bonds. The concepts used in this Account might also be applicable in other areas such as in f-block chemistry and excited-state reactivity of 4d and 5d OMCs.
在过去的几十年中,金属酶及其合成模型已成为研究兴趣日益增加的领域。金属酶及其合成模型使用氧代金属配合物(OMC),尤其是基于氧代铁(IV)的氧代金属配合物来氧化有机分子。理论研究帮助研究人员表征了活性物质并解决了机理问题。这项活动产生了大量关于 OMC 的反应性与过渡金属的身份,氧化态,配体场和自旋态之间关系的数据。理论研究还提供了有关过渡态(TS)结构,反应中间体,势垒和速率-平衡关系的信息。例如,实验理论的相互作用表明,非血红素酶使用具有铁中心上四个未配对电子的高自旋(S = 2)氧代铁(IV)物种从强 C-H 键中提取 H。然而,具有更高自旋态和金属上更多未配对电子的其他试剂则没有那么反应性。其他试剂则使用金属上的自旋态较低且未配对电子较少的试剂进行这些转化。这些反应的 TS 结构表现出取决于反应性自旋态的结构选择性。反应的势垒和热力学驱动力也取决于自旋态。H-抽象比热力学上更有利的协同插入 C-H 键中更受欢迎。目前,尚无统一的理论框架可以解释这些迷人趋势的全部内容。本说明旨在统一这一丰富的化学,并了解未配对电子对化学反应性的作用。我们表明,在氧化步骤中,通过质子耦合电子转移(PCET),过渡金属的 d-轨道块被一个电子富化。单个电子在金属上引起可变的交换相互作用,这反过来又取决于金属中心上未配对电子的数量。因此,我们引入了交换增强反应性(EER)原理,该原理预测了氧化反应中首选的自旋态,势垒对 TS 中未配对电子数的依赖性以及反应物变形能对自旋态的依赖性。我们用轨道选择规则补充了 EER,该规则预测了首选 TS 的结构,并提供了生物无机氧化反应的简便理论。这些规则表明,EER如何为化学反应性提供 Hund 规则:EER控制各种过渡金属配合物和底物的反应性景观。在解释的许多反应模式中,EER使最强键的键活化酶中的高自旋氧代铁(IV)配合物的丰度合理化。此说明中使用的概念也可能适用于其他领域,例如 f 区化学和 4d 和 5d OMC 的激发态反应性。