Suppr超能文献

在石墨烯上进行有机合成。

Organic synthesis on graphene.

出版信息

Acc Chem Res. 2013 Oct 15;46(10):2297-306. doi: 10.1021/ar300125w.

Abstract

Graphene is a two-dimensional crystalline carbon allotrope that has fascinated researchers worldwide and has extended the interest in carbon structures such as fullerenes and nanotubes. In this Account, we use electrical characterization tools to study chemistry on supported graphene. These experiments elucidate the way covalently bound phenyl units can change graphene's physical properties. Can we use chemistry to control electronic properties of graphene? What can we learn from well-known carbon allotropes like fullerenes? The surfaces of fullerenes and graphene show distinct differences in reactivity because of the high strain of sp² carbon in fullerenes compared with the complete lack of strain in graphene. Diazonium chemistry provides a versatile tool for attaching phenyl units covalently to carbon to produce advanced materials and electronic components, but diazonium-based carbon chemistry is strongly influenced by strain. Although fullerenes are highly reactive, graphite (stacks of graphene) remains relatively inert. We chemically introduce n- and p-like doping patterns in two-dimensional graphene using photolithography and extend the ability to chemically control doping to the chemical design of conducting and insulating areas. Thereby we can shape graphene surfaces into functional electronic devices. This Account also describes multistep synthesis on graphene-coated nanoparticles and the introduction of various functional groups on graphene surfaces. Only few functional groups can be produced directly via diazonium chemistry. To overcome this issue, we used these functional groups as starting points for more demanding organic reactions. We covalently attached chelating agents, catalysts, or polymers on the carbon surface. These more complex reactions facilitate the design of electronic modifications, intergraphene connections, and anchors for polymer incorporation. Diazonium chemistry forms strong covalent bridges between graphene and other areas of chemistry.

摘要

石墨烯是一种二维结晶碳同素异形体,它引起了全球研究人员的极大兴趣,并扩展了对富勒烯和纳米管等碳结构的兴趣。在本报告中,我们使用电特性分析工具来研究支撑在石墨烯上的化学。这些实验阐明了共价键合的苯基单元如何改变石墨烯的物理性质。我们能否利用化学来控制石墨烯的电子性质?我们可以从富勒烯等知名碳同素异形体中学到什么?由于富勒烯中 sp² 碳的应变很高,而石墨烯中完全没有应变,因此富勒烯和石墨烯的表面在反应性上表现出明显的差异。重氮化学为通过共价键将苯基单元连接到碳上以生产先进材料和电子元件提供了一种多功能工具,但基于重氮的碳化学受到应变的强烈影响。尽管富勒烯具有很高的反应性,但石墨(石墨烯堆叠)仍然相对惰性。我们使用光刻技术在二维石墨烯上引入 n 型和 p 型掺杂模式,并将化学控制掺杂的能力扩展到导电和绝缘区域的化学设计。由此,我们可以将石墨烯表面塑造成功能性电子设备。本报告还描述了在石墨烯涂覆的纳米粒子上的多步合成,以及在石墨烯表面上引入各种官能团。仅通过重氮化学可以直接产生少数官能团。为了克服这个问题,我们将这些官能团用作更具挑战性的有机反应的起点。我们将螯合剂、催化剂或聚合物共价键接到碳表面上。这些更复杂的反应促进了电子修饰、石墨烯之间的连接以及聚合物结合的锚定的设计。重氮化学在石墨烯和其他化学领域之间形成了牢固的共价键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验