Interdisciplinary Nanoscience Center, Aarhus University, Denmark.
Anal Chem. 2013 Jan 2;85(1):121-8. doi: 10.1021/ac302134s. Epub 2012 Dec 17.
The inherent redox activity of dopamine enables its direct electrochemical in vivo analysis ( Venton , B. J.; Wightman, M. R. Anal. Chem. 2003, 75, 414A). However, dopamine analysis is complicated by the interference from other electrochemically active endogenous compounds present in the brain, including dopamine precursors and metabolites and other neurotransmitters (NT). Here we report an electrochemical RNA aptamer-based biosensor for analysis of dopamine in the presence of other NT. The biosensor exploits a specific binding of dopamine by the RNA aptamer, immobilized at a cysteamine-modified Au electrode, and further electrochemical oxidation of dopamine. Specific recognition of dopamine by the aptamer allowed a selective amperometric detection of dopamine within the physiologically relevant 100 nM to 5 μM range in the presence of competitive concentrations of catechol, epinephrine, norepinephrine, 3,4-dihydroxy-phenylalanine (L-DOPA), 3,4-dihydroxyphenylacetic acid (DOPAC), methyldopamine, and tyramine, which gave negligible signals under conditions of experiments (electroanalysis at 0.185 V vs Ag/AgCl). The interference from ascorbic and uric acids was eliminated by application of a Nafion-coated membrane. The aptasensor response time was <1 s, and the sensitivity of analysis was 62 nA μM(-1) cm(-2). The proposed design of the aptasensor, based on electrostatic interactions between the positively charged cysteamine-modified electrode and the negatively charged aptamer, may be used as a general strategy not to restrict the conformational freedom and binding properties of surface-bound aptamers and, thus, be applicable for the development of other aptasensors.
多巴胺的固有氧化还原活性使其能够直接进行体内电化学分析(Venton,B. J.;Wightman,M. R. Anal. Chem. 2003, 75, 414A)。然而,由于大脑中存在其他电化学活性内源性化合物的干扰,包括多巴胺前体和代谢物以及其他神经递质(NT),多巴胺的分析变得复杂。在这里,我们报告了一种基于电化学 RNA 适体的生物传感器,用于在存在其他 NT 的情况下分析多巴胺。该生物传感器利用 RNA 适体与固定在半胱胺修饰的 Au 电极上的多巴胺的特异性结合,以及进一步的多巴胺电化学氧化。适体对多巴胺的特异性识别允许在生理相关的 100 nM 至 5 μM 范围内选择性安培检测多巴胺,同时在竞争浓度的儿茶酚、肾上腺素、去甲肾上腺素、3,4-二羟基苯丙氨酸(L-DOPA)、3,4-二羟基苯乙酸(DOPAC)、甲基多巴和酪胺存在下,在实验条件下(在 0.185 V 对 Ag/AgCl 进行电分析),这些物质几乎没有信号。通过应用 Nafion 涂层膜消除了抗坏血酸和尿酸的干扰。适体传感器的响应时间<1 s,分析灵敏度为 62 nA μM(-1) cm(-2)。基于带正电荷的半胱胺修饰电极与带负电荷的适体之间的静电相互作用的适体传感器设计可以用作一般策略,不仅限制了表面结合适体的构象自由度和结合特性,因此可适用于其他适体传感器的开发。