Suppr超能文献

氧化铁 (α-Fe2O3) 纳米粒子的三维特征描述:压缩感知启发式重建算法在电子断层扫描中的应用。

Three-dimensional characterization of iron oxide (α-Fe2O3) nanoparticles: application of a compressed sensing inspired reconstruction algorithm to electron tomography.

机构信息

Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA 24061, USA.

出版信息

Microsc Microanal. 2012 Dec;18(6):1362-7. doi: 10.1017/S1431927612013530. Epub 2012 Dec 5.

Abstract

In this article, we demonstrate the application of a new compressed sensing three-dimensional reconstruction algorithm for electron tomography that increases the accuracy of morphological characterization of nanostructured materials such as nanocrystalline iron oxide particles. A powerful feature of the algorithm is an anisotropic total variation norm for the L1 minimization during algebraic reconstruction that effectively reduces the elongation artifacts caused by limited angle sampling during electron tomography. The algorithm provides faithful morphologies that have not been feasible with existing techniques.

摘要

本文展示了一种新的压缩感知三维重建算法在电子断层扫描中的应用,该算法提高了纳米结构材料(如纳米晶氧化铁颗粒)的形态特征描述的准确性。该算法的一个强大功能是在代数重建过程中对 L1 最小化使用各向异性全变差范数,有效地减少了由于电子断层扫描中角度采样有限而导致的伸长伪影。该算法提供了真实的形态,这是现有技术所无法实现的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验