Hata Satoshi, Furukawa Hiromitsu, Gondo Takashi, Hirakami Daisuke, Horii Noritaka, Ikeda Ken-Ichi, Kawamoto Katsumi, Kimura Kosuke, Matsumura Syo, Mitsuhara Masatoshi, Miyazaki Hiroya, Miyazaki Shinsuke, Murayama Mitsu Mitsuhiro, Nakashima Hideharu, Saito Hikaru, Sakamoto Masashi, Yamasaki Shigeto
Department of Advanced Materials Science, Kyushu University, Fukuoka 816-8580, Japan.
The Ultramicroscopy Research Center, Kyushu University, Fukuoka 819-0395, Japan.
Microscopy (Oxf). 2020 May 21;69(3):141-155. doi: 10.1093/jmicro/dfaa002.
Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) enable the visualization of three-dimensional (3D) microstructures ranging from atomic to micrometer scales using 3D reconstruction techniques based on computed tomography algorithms. This 3D microscopy method is called electron tomography (ET) and has been utilized in the fields of materials science and engineering for more than two decades. Although atomic resolution is one of the current topics in ET research, the development and deployment of intermediate-resolution (non-atomic-resolution) ET imaging methods have garnered considerable attention from researchers. This research trend is probably not irrelevant due to the fact that the spatial resolution and functionality of 3D imaging methods of scanning electron microscopy (SEM) and X-ray microscopy have come to overlap with those of ET. In other words, there may be multiple ways to carry out 3D visualization using different microscopy methods for nanometer-scale objects in materials. From the above standpoint, this review paper aims to (i) describe the current status and issues of intermediate-resolution ET with regard to enhancing the effectiveness of TEM/STEM imaging and (ii) discuss promising applications of state-of-the-art intermediate-resolution ET for materials research with a particular focus on diffraction contrast ET for crystalline microstructures (superlattice domains and dislocations) including a demonstration of in situ dislocation tomography.
透射电子显微镜(TEM)和扫描透射电子显微镜(STEM)能够使用基于计算机断层扫描算法的三维重建技术,实现从原子尺度到微米尺度的三维(3D)微观结构的可视化。这种三维显微镜方法被称为电子断层扫描(ET),并且已经在材料科学与工程领域应用了二十多年。尽管原子分辨率是目前电子断层扫描研究的热点之一,但中分辨率(非原子分辨率)电子断层扫描成像方法的开发与应用也引起了研究人员的广泛关注。由于扫描电子显微镜(SEM)和X射线显微镜的三维成像方法的空间分辨率和功能已与电子断层扫描的空间分辨率和功能相互重叠,这一研究趋势可能并非毫无关联。换句话说,对于材料中的纳米级物体,可能存在多种使用不同显微镜方法进行三维可视化的途径。基于上述观点立场,这篇综述文章旨在:(i)描述中分辨率电子断层扫描在提高透射电子显微镜/扫描透射电子显微镜成像效率方面的现状与问题;(ii)讨论当前最先进的中分辨率电子断层扫描在材料研究中的潜在应用,特别关注用于晶体微观结构(超晶格畴和位错)的衍射衬度电子断层扫描,包括原位位错断层扫描的演示。