Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
J Biol Chem. 2013 Jan 25;288(4):2271-80. doi: 10.1074/jbc.M112.412403. Epub 2012 Dec 3.
The minus end-directed microtubule motor cytoplasmic dynein is responsible for the intracellular movements of many organelles, including nuclei and endosomes. The dynein heavy chain contains a C-terminal motor domain and an N-terminal tail domain. The tail binds other dynein subunits and the cargo-interacting dynactin complex but is dispensable for movement of single dynein molecules in vitro. Here, we identified a mutation in the Aspergillus nidulans heavy chain tail domain, nudA(F208V), which causes obvious defects in dynein-mediated nuclear positioning and early endosome movement. Astonishingly, the nudA(F208I) mutation in the same position does not cause the same defects, suggesting that a subtle difference in the size of the amino acid side chain at this position has a significant consequence. Importantly, our biochemical analyses indicate that the nudA(F208V) mutation does not affect dynein subunit interactions and the mutant dynein is also able to bind dynactin and another dynein regulator, NUDF/LIS1. The mutant dynein is able to physically interact with the early endosome cargo, but dynein-mediated early endosome movement away from the hyphal tip occurs at a significantly reduced frequency. Within the small group of early endosomes that move away from the hyphal tip in the mutant, the average speed of movement is lower than that in the wild type. Given the dispensability of the dynein tail in dynein motility in vitro, our results support the notion that the structural integrity of the dynein tail is critical in vivo for the coordination of dynein force production and movement when the motor is heavily loaded.
负端导向的微管马达细胞质动力蛋白负责许多细胞器的细胞内运动,包括核和内体。动力蛋白重链包含一个 C 端马达结构域和一个 N 端尾部结构域。尾部结合其他动力蛋白亚基和货物相互作用的动力蛋白复合物,但对于体外单个动力蛋白分子的运动是可有可无的。在这里,我们鉴定了一个 Aspergillus nidulans 重链尾部结构域nudA(F208V)的突变,该突变导致动力蛋白介导的核定位和早期内体运动明显缺陷。令人惊讶的是,同一位置的 nudA(F208I)突变不会导致相同的缺陷,这表明该位置的氨基酸侧链大小的微小差异会产生重大影响。重要的是,我们的生化分析表明,nudA(F208V)突变不影响动力蛋白亚基相互作用,突变型动力蛋白也能够结合动力蛋白复合物和另一个动力蛋白调节剂 NUDF/LIS1。突变型动力蛋白能够与早期内体货物进行物理相互作用,但动力蛋白介导的早期内体从菌丝尖端的远离运动发生的频率显著降低。在突变体中从菌丝尖端远离的一小部分早期内体中,运动的平均速度低于野生型。鉴于动力蛋白尾部在体外动力蛋白运动中的可有可无,我们的结果支持这样的观点,即当马达重载时,动力蛋白尾部的结构完整性对于协调动力蛋白力的产生和运动在体内是至关重要的。