Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
Cell. 2012 Aug 31;150(5):975-86. doi: 10.1016/j.cell.2012.07.022.
The lissencephaly protein Lis1 has been reported to regulate the mechanical behavior of cytoplasmic dynein, the primary minus-end-directed microtubule motor. However, the regulatory mechanism remains poorly understood. Here, we address this issue using purified proteins from Saccharomyces cerevisiae and a combination of techniques, including single-molecule imaging and single-particle electron microscopy. We show that rather than binding to the main ATPase site within dynein's AAA+ ring or its microtubule-binding stalk directly, Lis1 engages the interface between these elements. Lis1 causes individual dynein motors to remain attached to microtubules for extended periods, even during cycles of ATP hydrolysis that would canonically induce detachment. Thus, Lis1 operates like a "clutch" that prevents dynein's ATPase domain from transmitting a detachment signal to its track-binding domain. We discuss how these findings provide a conserved mechanism for dynein functions in living cells that require prolonged microtubule attachments.
脑裂畸形蛋白 Lis1 已被报道可调节细胞质动力蛋白的机械行为,细胞质动力蛋白是主要的负向微管运动蛋白。然而,其调控机制仍知之甚少。在这里,我们使用来自酿酒酵母的纯化蛋白,并结合多种技术,包括单分子成像和单颗粒电子显微镜,来解决这个问题。我们表明,Lis1 并非直接与动力蛋白的 AAA+ 环内的主要 ATP 酶位点或其微管结合茎结合,而是与这些元件之间的界面结合。Lis1 使单个动力蛋白马达能够在延长的时间内与微管结合,即使在会引发典型脱离的 ATP 水解循环期间也是如此。因此,Lis1 像一个“离合器”,防止动力蛋白的 ATP 酶结构域将脱离信号传递给其轨道结合结构域。我们讨论了这些发现如何为需要延长微管附着的活细胞中的动力蛋白功能提供保守的机制。