Nakajima Natsu, Tamura Takeyuki, Yamanishi Yoshihiro, Horimoto Katsuhisa, Akutsu Tatsuya
Bioinformatics Center, Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto 611-0011, Japan.
ScientificWorldJournal. 2012;2012:957620. doi: 10.1100/2012/957620. Epub 2012 Nov 1.
We consider the problem of network completion, which is to make the minimum amount of modifications to a given network so that the resulting network is most consistent with the observed data. We employ here a certain type of differential equations as gene regulation rules in a genetic network, gene expression time series data as observed data, and deletions and additions of edges as basic modification operations. In addition, we assume that the numbers of deleted and added edges are specified. For this problem, we present a novel method using dynamic programming and least-squares fitting and show that it outputs a network with the minimum sum squared error in polynomial time if the maximum indegree of the network is bounded by a constant. We also perform computational experiments using both artificially generated and real gene expression time series data.
我们考虑网络补全问题,即对给定网络进行最少的修改,以使得到的网络与观测数据最相符。在此,我们采用特定类型的微分方程作为基因调控网络中的基因调控规则,将基因表达时间序列数据作为观测数据,并将边的删除和添加作为基本修改操作。此外,我们假设删除和添加边的数量是指定的。针对这个问题,我们提出了一种使用动态规划和最小二乘法拟合的新方法,并表明如果网络的最大入度由一个常数界定,那么该方法能在多项式时间内输出具有最小平方和误差的网络。我们还使用人工生成的和真实的基因表达时间序列数据进行了计算实验。