Suppr超能文献

从噪声测量中识别生化调控网络的最小二乘法。

Least-squares methods for identifying biochemical regulatory networks from noisy measurements.

作者信息

Kim Jongrae, Bates Declan G, Postlethwaite Ian, Heslop-Harrison Pat, Cho Kwang-Hyun

机构信息

Department of Engineering, University of Leicester, Leicester, LE1 7RH, UK.

出版信息

BMC Bioinformatics. 2007 Jan 10;8:8. doi: 10.1186/1471-2105-8-8.

Abstract

BACKGROUND

We consider the problem of identifying the dynamic interactions in biochemical networks from noisy experimental data. Typically, approaches for solving this problem make use of an estimation algorithm such as the well-known linear Least-Squares (LS) estimation technique. We demonstrate that when time-series measurements are corrupted by white noise and/or drift noise, more accurate and reliable identification of network interactions can be achieved by employing an estimation algorithm known as Constrained Total Least Squares (CTLS). The Total Least Squares (TLS) technique is a generalised least squares method to solve an overdetermined set of equations whose coefficients are noisy. The CTLS is a natural extension of TLS to the case where the noise components of the coefficients are correlated, as is usually the case with time-series measurements of concentrations and expression profiles in gene networks.

RESULTS

The superior performance of the CTLS method in identifying network interactions is demonstrated on three examples: a genetic network containing four genes, a network describing p53 activity and mdm2 messenger RNA interactions, and a recently proposed kinetic model for interleukin (IL)-6 and (IL)-12b messenger RNA expression as a function of ATF3 and NF-kappaB promoter binding. For the first example, the CTLS significantly reduces the errors in the estimation of the Jacobian for the gene network. For the second, the CTLS reduces the errors from the measurements that are corrupted by white noise and the effect of neglected kinetics. For the third, it allows the correct identification, from noisy data, of the negative regulation of (IL)-6 and (IL)-12b by ATF3.

CONCLUSION

The significant improvements in performance demonstrated by the CTLS method under the wide range of conditions tested here, including different levels and types of measurement noise and different numbers of data points, suggests that its application will enable more accurate and reliable identification and modelling of biochemical networks.

摘要

背景

我们考虑从有噪声的实验数据中识别生化网络中动态相互作用的问题。通常,解决此问题的方法使用诸如著名的线性最小二乘法(LS)估计技术之类的估计算法。我们证明,当时间序列测量受到白噪声和/或漂移噪声的干扰时,通过采用一种称为约束总体最小二乘法(CTLS)的估计算法,可以实现对网络相互作用更准确可靠的识别。总体最小二乘法(TLS)技术是一种广义最小二乘法,用于求解系数有噪声的超定方程组。CTLS是TLS在系数噪声分量相关情况下的自然扩展,基因网络中浓度和表达谱的时间序列测量通常就是这种情况。

结果

CTLS方法在识别网络相互作用方面的卓越性能在三个示例中得到了证明:一个包含四个基因的遗传网络、一个描述p53活性和mdm2信使RNA相互作用的网络,以及一个最近提出的白介素(IL)-6和(IL)-12b信使RNA表达作为ATF3和NF-κB启动子结合函数的动力学模型。对于第一个示例,CTLS显著降低了基因网络雅可比矩阵估计中的误差。对于第二个示例,CTLS减少了受白噪声破坏的测量中的误差以及被忽略动力学的影响。对于第三个示例,它能够从有噪声的数据中正确识别出ATF3对(IL)-6和(IL)-12b的负调控。

结论

CTLS方法在此处测试的广泛条件下,包括不同水平和类型的测量噪声以及不同数量的数据点,都表现出显著的性能提升,这表明其应用将使生化网络的识别和建模更加准确可靠。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddac/1793997/e652c11f4d59/1471-2105-8-8-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验