Division of Biology 114-96, California Institute of Technology , 1200 East California Boulevard, Pasadena, CA 91125 , USA ; Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, 318 Campus Drive, Stanford University School of Medicine , Palo Alto, CA 94305 , USA.
Biol Open. 2012 Jun 15;1(6):548-58. doi: 10.1242/bio.2012471. Epub 2012 Apr 24.
The respiratory (tracheal) system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr) tyrosine kinase (TK). Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways.
果蝇幼虫的呼吸系统是一个错综复杂的充气管状分支网络。它的发育逻辑在某些方面与脊椎动物的血管系统相似。我们之前描述了一种独特的胚胎气管分支发生表型,这种表型是由两种 III 型受体酪氨酸磷酸酶(RPTP),Ptp4E 和 Ptp10D 的缺失引起的。在 Ptp4E Ptp10D 双突变体中,单细胞和终末气管分支中的线性管被转化为包含顶细胞表面标记的泡状囊肿。这种管状几何形状表型受表皮生长因子受体(Egfr)酪氨酸激酶(TK)活性或表达的变化调节。Ptp10D 与 Egfr 物理相互作用。在这里,我们证明 Ptp4E Ptp10D 表型是 RPTPs 对三种生长因子受体 TK(Egfr、Breathless 和 Pvr)负调控丧失的结果。通过气管表达显性负突变体降低三种激酶中的任何一种的活性都会抑制囊肿形成。通过相互竞争显性负和组成性激活激酶突变体,我们表明这三种 RTK 具有部分可互换的活性,因此增加一种激酶的活性可以补偿另一种激酶活性降低的影响。这意味着需要该表型的 SH2 结构域下游效应子可能能够与三种受体 TK 的磷酸酪氨酸位点相互作用。我们还表明,该表型涉及通过 MAP 激酶和 Rho GTPase 途径的信号转导增加。