UPMC Univ. Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, F-75005, Paris, France.
Langmuir. 2012 Dec 18;28(50):17477-93. doi: 10.1021/la3038318. Epub 2012 Dec 6.
The mechanisms of formation of organically modified (phenyl, vinyl, and methyl) silica materials with cubic Pm3n and hexagonal p6m periodic mesostructures obtained in one step in the presence of the cetyltrimethylammonium bromide (CTA(+)B) surfactant are reported in this study. Understanding the way these complex materials form is difficult but undoubtedly necessary for controlling the material structure and its properties because of the combined presence of surface organic groups and large surface areas. Here, the mechanism of formation is clarified on the basis of the modeling of time-resolved in situ small angle X-ray scattering (SAXS) experiments, with a specific focus on the micelle evolution during material formation. Their fast self-assembly is followed for the first time with a quick temporal resolution of a few seconds using a third-generation synchrotron radiation source. To better understand the behavior of the complex organic-containing mesostructure, we perform a comparative study with the corresponding organo-free, isostructural materials obtained from three different surfactants (CTA(+), CTEA(+), and CTPA(+)) having a constant chain length (C(16)) and an increasing polar head volume (met-, et-, and prop-). Numerical modeling of SAXS data was crucial to highlighting a systematic sphere-to-rod micellar transition, otherwise undetected, before the formation of the 2D hexagonal phase in both organo-free and organo-containing systems. Then, two different pathways were found in the formation of the cubic Pm3n mesostructure: either an ordering transition from concentrated flocs of spherical micelles (from CTEA(+) or CTPA(+)) for pure TEOS systems or a structural transformation from an intermediate 2D hexagonal mesophase in organosilane systems (from CTA(+)). Combining the comparison between organo-free and organo-containing systems with numerical modeling, we find that the hexagonal-to-cubic phase transition in the organically modified materials seems to be strongly influenced not only by the obvious presence of the organic group but also by the quicker and more massive condensation kinetics of silicate oligomers on the CTA(+) micellar surface. Finally, quite unexpectedly, we find a wormlike-to-sphere micellar transition in the CTPA(+) system.
本研究报道了一步法在十六烷基三甲基溴化铵(CTAB)表面活性剂存在下合成具有立方 Pm3n 和六方 p6m 周期性介孔结构的有机改性(苯基、乙烯基和甲基)硅材料的形成机制。由于表面有机基团和大的表面积的共同存在,理解这些复杂材料的形成方式是困难的,但无疑是控制材料结构和性能所必需的。在这里,基于时间分辨原位小角 X 射线散射(SAXS)实验的建模,阐明了形成机制,特别关注材料形成过程中胶束的演变。首次使用第三代同步辐射源以几秒钟的快速时间分辨率跟踪其快速自组装。为了更好地理解复杂含有机物介孔结构的行为,我们使用三种不同的表面活性剂(CTA(+)、CTEA(+)和 CTPA(+))进行了相应的有机无定形、同构材料的对比研究,这些表面活性剂具有相同的链长(C(16))和增加的极性头体积(甲、乙和丙)。SAXS 数据的数值模拟对于突出系统的球棒胶束转变至关重要,否则在无定形和含有机物系统的 2D 六方相形成之前,这种转变是无法检测到的。然后,在立方 Pm3n 介孔结构的形成中发现了两种不同的途径:要么是来自 CTEA(+)或 CTPA(+)的纯 TEOS 体系中球形胶束的浓缩絮体的有序转变,要么是有机硅烷体系中中间 2D 六方相的结构转变(来自 CTA(+))。将无定形和含有机物系统的比较与数值模拟相结合,我们发现有机改性材料中的六方-立方相转变不仅受到有机基团的明显存在的强烈影响,而且还受到硅酸盐低聚物在 CTA(+)胶束表面上更快、更大量的缩合动力学的强烈影响。最后,出乎意料的是,我们在 CTPA(+)体系中发现了蠕虫状到球状胶束的转变。