Li Jiantong, Ostling Mikael
KTH Royal Institute of Technology, School of Information and Communication Technology, Electrum 229, SE-164 40 Kista, Sweden.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):040105. doi: 10.1103/PhysRevE.86.040105. Epub 2012 Oct 24.
This Rapid Communication proposes a comprehensive scaling theory for percolation, which clarifies the intrinsic nature of finite-size scaling and effectively addresses the finite-size effects. This theory applies to extensive systems, including especially the explosive percolation. It is suggested that explosive percolation shares the same scaling law as normal percolation, but may suffer from more severe finite-size effects. Remarkably, in contrast to previous studies, relying on the framework of our theory, the present Rapid Communication suggests that for all systems, the universal scaling functions do not depend on the boundary conditions.
本快报提出了一种用于渗流的综合标度理论,该理论阐明了有限尺寸标度的内在本质,并有效解决了有限尺寸效应问题。该理论适用于广泛的系统,尤其包括爆发性渗流。研究表明,爆发性渗流与正常渗流具有相同的标度律,但可能会受到更严重的有限尺寸效应影响。值得注意的是,与以往研究不同,基于我们的理论框架,本快报表明对于所有系统,通用标度函数不依赖于边界条件。