Suppr超能文献

聚乙二醇稳定的核壳纳米粒子:线性与树枝状聚合物壳结构对胶体性质和温度诱导聚集可逆性的影响。

PEG-stabilized core-shell nanoparticles: impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation.

机构信息

Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland.

出版信息

ACS Nano. 2013 Jan 22;7(1):316-29. doi: 10.1021/nn304045q. Epub 2012 Dec 20.

Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used experimentally and also clinically tested in diverse areas of biology and medicine. Applications include magnetic resonance imaging, cell sorting, drug delivery, and hyperthermia. Physicochemical surface properties are particularly relevant in the context of achieving high colloidal nanoparticle (NP) stability and preventing agglomeration (particularly challenging in biological fluids), increasing blood circulation time, and possibly targeting specific cells or tissues through the presentation of bioligands. Traditionally, NP surfaces are sterically stabilized with hydrophilic polymeric matrices, such as dextran or linear poly(ethylene glycol) brushes. While dendrimers have found applications as drug carriers, dispersants with dendritic ("dendrons") or hyperbranched structures have been comparatively neglected despite their unique properties, such as a precisely defined molecular structure and the ability to present biofunctionalities at high density at the NP periphery. This work covers the synthesis of SPIONs and their stabilization based on poly(ethylene glycol) (PEG) and oligo(ethylene glycol) (OEG) chemistry and compares the physicochemical properties of NPs stabilized with linear and dendritic macromolecules of comparable molecular weight. The results highlight the impact of the polymeric interface architecture on solubility, colloidal stability, hydrodynamic radius, and thermoresponsive behavior. Dendron-stabilized NPs were found to provide excellent colloidal stability, despite a smaller hydrodynamic radius and lower degree of soft shell hydration compared to linear PEG analogues. Moreover, for the same grafting density and molecular weight of the stabilizers, OEG dendron-stabilized NPs show a reversible temperature-induced aggregation behavior, in contrast to the essentially irreversible aggregation and sedimentation observed for the linear PEG analogues. This new class of dendritically stabilized NPs is believed to have a potential for future biomedical and other applications, in which stability, resistance to (or reversible) aggregation, ultrasmall size (for crossing biological barriers or inclusion in responsive artificial membranes), and/or high corona density of (bio)active ligands are key.

摘要

超顺磁性氧化铁纳米粒子(SPIONs)在生物学和医学的多个领域中已被广泛应用于实验和临床研究。其应用包括磁共振成像、细胞分选、药物输送和热疗。物理化学表面特性在实现高胶体纳米粒子(NP)稳定性和防止聚集(在生物流体中尤其具有挑战性)、增加血液循环时间以及通过呈现生物配体可能靶向特定细胞或组织方面尤为重要。传统上,NP 表面通过亲水性聚合物基质(如葡聚糖或线性聚乙二醇(PEG)刷)进行空间稳定。虽然树突状聚合物已被应用于药物载体,但具有树突状(“树枝”)或超支化结构的分散剂尽管具有独特的性质,如精确定义的分子结构和在 NP 外围高浓度呈现生物功能性的能力,却相对被忽视。这项工作涵盖了基于聚乙二醇(PEG)和聚氧乙烯(OEG)化学的 SPIONs 的合成及其稳定,并比较了用具有相似分子量的线性和树枝状大分子稳定的 NPs 的物理化学性质。结果突出了聚合物界面结构对溶解度、胶体稳定性、水动力半径和温度响应行为的影响。尽管与线性 PEG 类似物相比,树枝状纳米粒子具有较小的水动力半径和较低的软壳水合程度,但仍具有出色的胶体稳定性。此外,对于相同的稳定剂接枝密度和分子量,OEG 树枝状稳定的 NPs 表现出可逆的温度诱导聚集行为,而线性 PEG 类似物则观察到基本上不可逆的聚集和沉淀。相信具有树枝状结构的新型稳定的 NPs 具有未来生物医学和其他应用的潜力,其中稳定性、对(或可逆)聚集的抗性、超小尺寸(用于穿越生物屏障或包含在响应性人工膜中)和/或(生物)活性配体的高冠状密度是关键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验