Suppr超能文献

动态超网络的同步:通过矩阵的同时块对角化进行降维。

Synchronization of dynamical hypernetworks: dimensionality reduction through simultaneous block-diagonalization of matrices.

作者信息

Irving Daniel, Sorrentino Francesco

机构信息

University of New Mexico, Albuquerque, New Mexico 87131, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056102. doi: 10.1103/PhysRevE.86.056102. Epub 2012 Nov 5.

Abstract

We present a general framework to study stability of the synchronous solution for a hypernetwork of coupled dynamical systems. We are able to reduce the dimensionality of the problem by using simultaneous block diagonalization of matrices. We obtain necessary and sufficient conditions for stability of the synchronous solution in terms of a set of lower-dimensional problems and test the predictions of our low-dimensional analysis through numerical simulations. Under certain conditions, this technique may yield a substantial reduction of the dimensionality of the problem. For example, for a class of dynamical hypernetworks analyzed in the paper, we discover that arbitrarily large networks can be reduced to a collection of subsystems of dimensionality no more than 2. We apply our reduction technique to a number of different examples, including the class of undirected unweighted hypermotifs with 3 nodes.

摘要

我们提出了一个用于研究耦合动力系统超网络同步解稳定性的通用框架。通过使用矩阵的同时块对角化,我们能够降低问题的维度。我们根据一组低维问题获得了同步解稳定性的充要条件,并通过数值模拟检验了我们低维分析的预测结果。在某些条件下,该技术可能会大幅降低问题的维度。例如,对于本文分析的一类动力超网络,我们发现任意大的网络都可以简化为维度不超过2的子系统集合。我们将降维技术应用于许多不同的例子,包括具有3个节点的无向无权超基序类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验