Bose Ranjan, Hamacher Kay
Department of Electrical Engineering, IIT Delhi, Hauz Khas, New Delhi, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056112. doi: 10.1103/PhysRevE.86.056112. Epub 2012 Nov 26.
We propose two alternate information theoretical approaches to assess non-Gaussian fluctuations in the return dynamics of financial markets. Specifically, we use superinformation, which is a measure of the disorder of the entropy of time series. We argue on theoretical grounds on its usefulness and show that it can be applied effectively for analyzing returns. A study of stock market data for over five years has been carried out using this approach. We show how superinformation helps to identify and classify important signals in the time series. The financial crisis of 2008 comes out very clearly in the superinformation plots. In addition, we introduce the super mutual information. Distinct super mutual information signatures are observed that might be used to mitigate idiosyncratic risk. The universality of our approach has been tested by carrying out the analysis for the 100 stocks listed in S&P100 index. The average superinformation values for the S&P100 stocks correlates very well with the VIX.
我们提出了两种替代的信息理论方法来评估金融市场回报动态中的非高斯波动。具体而言,我们使用超信息,它是时间序列熵无序度的一种度量。我们从理论依据上论证了它的有用性,并表明它可有效应用于分析回报。已使用此方法对五年多的股票市场数据进行了研究。我们展示了超信息如何有助于识别和分类时间序列中的重要信号。2008年金融危机在超信息图中非常清晰地显现出来。此外,我们引入了超互信息。观察到不同的超互信息特征,这些特征可能用于减轻特质风险。我们通过对标准普尔100指数中列出的100只股票进行分析,测试了我们方法的普遍性。标准普尔100指数股票的平均超信息值与波动率指数(VIX)相关性非常好。