Murialdo Pietro, Ponta Linda, Carbone Anna
Institute of Condensed Matter Physics and Complex Systems, DISAT, Politecnico di Torino, 10129 Torino, Italy.
School of Industrial Engineering, LIUC-Università Cattaneo, Castellanza, VA 21052, Italy.
Entropy (Basel). 2020 Jun 8;22(6):634. doi: 10.3390/e22060634.
A perspective is taken on the intangible complexity of economic and social systems by investigating the dynamical processes producing, storing and transmitting information in financial time series. An extensive analysis based on the approach has evidenced market and horizon dependence in highest-frequency data of real world financial assets. The behavior is scrutinized by applying the moving average cluster entropy approach to long-range correlated stochastic processes as the Autoregressive Fractionally Integrated Moving Average (ARFIMA) and Fractional Brownian motion (FBM). An extensive set of series is generated with a broad range of values of the Hurst exponent and of the autoregressive, differencing and moving average parameters p , d , q . A systematic relation between moving average cluster entropy and long-range correlation parameters , is observed. This study shows that the characteristic behaviour exhibited by the horizon dependence of the cluster entropy is related to long-range positive correlation in financial markets. Specifically, long range positively correlated ARFIMA processes with differencing parameter d ≃ 0.05 , d ≃ 0.15 and d ≃ 0.25 are consistent with moving average cluster entropy results obtained in time series of DJIA, S&P500 and NASDAQ. The findings clearly point to a variability of price returns, consistently with a price dynamics involving multiple temporal scales and, thus, short- and long-run volatility components. An important aspect of the proposed approach is the ability to capture detailed horizon dependence over relatively short horizons (one to twelve months) and thus its relevance to define risk analysis indices.
通过研究金融时间序列中产生、存储和传输信息的动态过程,探讨了经济和社会系统无形的复杂性。基于该方法的广泛分析表明,现实世界金融资产的高频数据存在市场和时间范围依赖性。通过将移动平均聚类熵方法应用于具有长期相关性的随机过程,如自回归分数整合移动平均(ARFIMA)和分数布朗运动(FBM),对这种行为进行了仔细研究。生成了一组广泛的序列,其中赫斯特指数以及自回归、差分和移动平均参数p、d、q具有广泛的值。观察到移动平均聚类熵与长期相关参数之间的系统关系。本研究表明,聚类熵的时间范围依赖性所表现出的特征行为与金融市场中的长期正相关有关。具体而言,差分参数d≃0.05、d≃0.15和d≃0.25的长期正相关ARFIMA过程与道琼斯工业平均指数(DJIA)、标准普尔500指数(S&P500)和纳斯达克指数(NASDAQ)时间序列中获得的移动平均聚类熵结果一致。这些发现清楚地表明了价格回报的可变性,这与涉及多个时间尺度的价格动态一致,因此与短期和长期波动成分一致。所提出方法的一个重要方面是能够在相对较短的时间范围(一到十二个月)内捕捉详细的时间范围依赖性,因此其与定义风险分析指标相关。