Fernandes L D, de Aguiar M A M
Instituto de Física "Gleb Wataghin," Universidade Estadual de Campinas (UNICAMP) 13083-970, Campinas, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056203. doi: 10.1103/PhysRevE.86.056203. Epub 2012 Nov 5.
Reaction-diffusion systems may lead to the formation of steady-state heterogeneous spatial patterns, known as Turing patterns. Their mathematical formulation is important for the study of pattern formation in general and plays central roles in many fields of biology, such as ecology and morphogenesis. Here we show that Turing patterns may have a decisive role in shaping the abundance distribution of predators and prey living in patchy landscapes. We extend the original model proposed by Nakao and Mikhailov [Nat. Phys. 6, 544 (2010)] by considering food chains with several interacting pairs of prey and predators distributed on a scale-free network of patches. We identify patterns of species distribution displaying high degrees of apparent competition driven by Turing instabilities. Our results provide further indication that differences in abundance distribution among patches can be generated dynamically by self organized Turing patterns and not only by intrinsic environmental heterogeneity.
反应扩散系统可能会导致稳态非均匀空间模式的形成,即所谓的图灵模式。其数学公式对于一般的模式形成研究很重要,并且在许多生物学领域,如生态学和形态发生中起着核心作用。在这里,我们表明图灵模式可能在塑造生活在斑块状景观中的捕食者和猎物的丰度分布方面具有决定性作用。我们扩展了中尾和米哈伊洛夫[《自然·物理学》6, 544 (2010)]提出的原始模型,考虑了由几个相互作用的猎物和捕食者对组成的食物链,这些对分布在一个无标度斑块网络上。我们识别出由图灵不稳定性驱动的表现出高度明显竞争的物种分布模式。我们的结果进一步表明,斑块间丰度分布的差异不仅可以由内在环境异质性动态产生,还可以由自组织的图灵模式产生。