Suppr超能文献

大规模脑网络中的横向不稳定性产生复杂的时空振荡。

Complex spatiotemporal oscillations emerge from transverse instabilities in large-scale brain networks.

机构信息

Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.

Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

出版信息

PLoS Comput Biol. 2023 Apr 12;19(4):e1010781. doi: 10.1371/journal.pcbi.1010781. eCollection 2023 Apr.

Abstract

Spatiotemporal oscillations underlie all cognitive brain functions. Large-scale brain models, constrained by neuroimaging data, aim to trace the principles underlying such macroscopic neural activity from the intricate and multi-scale structure of the brain. Despite substantial progress in the field, many aspects about the mechanisms behind the onset of spatiotemporal neural dynamics are still unknown. In this work we establish a simple framework for the emergence of complex brain dynamics, including high-dimensional chaos and travelling waves. The model consists of a complex network of 90 brain regions, whose structural connectivity is obtained from tractography data. The activity of each brain area is governed by a Jansen neural mass model and we normalize the total input received by each node so it amounts the same across all brain areas. This assumption allows for the existence of an homogeneous invariant manifold, i.e., a set of different stationary and oscillatory states in which all nodes behave identically. Stability analysis of these homogeneous solutions unveils a transverse instability of the synchronized state, which gives rise to different types of spatiotemporal dynamics, such as chaotic alpha activity. Additionally, we illustrate the ubiquity of this route towards complex spatiotemporal activity in a network of next generation neural mass models. Altogehter, our results unveil the bifurcation landscape that underlies the emergence of function from structure in the brain.

摘要

时空振荡是所有认知脑功能的基础。受神经影像学数据约束的大规模大脑模型旨在从大脑复杂的多尺度结构中追踪产生这种宏观神经活动的原理。尽管该领域取得了重大进展,但关于时空神经动力学起始背后的机制的许多方面仍不清楚。在这项工作中,我们建立了一个简单的框架,用于出现复杂的大脑动力学,包括高维混沌和行波。该模型由 90 个大脑区域的复杂网络组成,其结构连接性来自轨迹追踪数据。每个大脑区域的活动由 Jansen 神经质量模型控制,我们将每个节点接收到的总输入归一化,使其在所有大脑区域中相同。该假设允许存在一个均匀不变流形,即一组不同的静止和振荡状态,其中所有节点的行为完全相同。这些均匀解的稳定性分析揭示了同步状态的横向不稳定性,从而产生了不同类型的时空动力学,例如混沌 alpha 活动。此外,我们在下一代神经质量模型网络中说明了这种朝向复杂时空活动的普遍性途径。总之,我们的结果揭示了大脑中从结构中产生功能的分岔景观。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ae9/10124884/fac33518ec22/pcbi.1010781.g001.jpg

相似文献

1
Complex spatiotemporal oscillations emerge from transverse instabilities in large-scale brain networks.
PLoS Comput Biol. 2023 Apr 12;19(4):e1010781. doi: 10.1371/journal.pcbi.1010781. eCollection 2023 Apr.
2
Role of local network oscillations in resting-state functional connectivity.
Neuroimage. 2011 Jul 1;57(1):130-139. doi: 10.1016/j.neuroimage.2011.04.010. Epub 2011 Apr 12.
3
Dynamic primitives of brain network interaction.
Neuroimage. 2022 Apr 15;250:118928. doi: 10.1016/j.neuroimage.2022.118928. Epub 2022 Jan 29.
4
Local inhibitory plasticity tunes macroscopic brain dynamics and allows the emergence of functional brain networks.
Neuroimage. 2016 Jan 1;124(Pt A):85-95. doi: 10.1016/j.neuroimage.2015.08.069. Epub 2015 Sep 5.
5
Dynamical Mechanisms of Interictal Resting-State Functional Connectivity in Epilepsy.
J Neurosci. 2020 Jul 15;40(29):5572-5588. doi: 10.1523/JNEUROSCI.0905-19.2020. Epub 2020 Jun 8.
6
Chaos in homeostatically regulated neural systems.
Chaos. 2018 Aug;28(8):083104. doi: 10.1063/1.5026489.
7
Multi-modal and multi-model interrogation of large-scale functional brain networks.
Neuroimage. 2023 Aug 15;277:120236. doi: 10.1016/j.neuroimage.2023.120236. Epub 2023 Jun 22.
8
Metastable brain waves.
Nat Commun. 2019 Mar 5;10(1):1056. doi: 10.1038/s41467-019-08999-0.
9
Resting state networks in empirical and simulated dynamic functional connectivity.
Neuroimage. 2017 Oct 1;159:388-402. doi: 10.1016/j.neuroimage.2017.07.065. Epub 2017 Aug 3.
10
The role of node dynamics in shaping emergent functional connectivity patterns in the brain.
Netw Neurosci. 2020 May 1;4(2):467-483. doi: 10.1162/netn_a_00130. eCollection 2020.

引用本文的文献

1
Dialogue mechanisms between astrocytic and neuronal networks: A whole-brain modelling approach.
PLoS Comput Biol. 2025 Jan 13;21(1):e1012683. doi: 10.1371/journal.pcbi.1012683. eCollection 2025 Jan.

本文引用的文献

1
Effects of classic psychedelic drugs on turbulent signatures in brain dynamics.
Netw Neurosci. 2022 Oct 1;6(4):1104-1124. doi: 10.1162/netn_a_00250. eCollection 2022.
2
Comparison between an exact and a heuristic neural mass model with second-order synapses.
Biol Cybern. 2023 Apr;117(1-2):5-19. doi: 10.1007/s00422-022-00952-7. Epub 2022 Dec 1.
3
Theory of the Multiregional Neocortex: Large-Scale Neural Dynamics and Distributed Cognition.
Annu Rev Neurosci. 2022 Jul 8;45:533-560. doi: 10.1146/annurev-neuro-110920-035434.
4
Unifying turbulent dynamics framework distinguishes different brain states.
Commun Biol. 2022 Jun 29;5(1):638. doi: 10.1038/s42003-022-03576-6.
5
The Menstrual Cycle Modulates Whole-Brain Turbulent Dynamics.
Front Neurosci. 2021 Dec 9;15:753820. doi: 10.3389/fnins.2021.753820. eCollection 2021.
6
Capturing the non-stationarity of whole-brain dynamics underlying human brain states.
Neuroimage. 2021 Dec 1;244:118551. doi: 10.1016/j.neuroimage.2021.118551. Epub 2021 Sep 8.
7
Rare long-range cortical connections enhance human information processing.
Curr Biol. 2021 Oct 25;31(20):4436-4448.e5. doi: 10.1016/j.cub.2021.07.064. Epub 2021 Aug 25.
8
Functional harmonics reveal multi-dimensional basis functions underlying cortical organization.
Cell Rep. 2021 Aug 24;36(8):109554. doi: 10.1016/j.celrep.2021.109554.
9
Perturbations in dynamical models of whole-brain activity dissociate between the level and stability of consciousness.
PLoS Comput Biol. 2021 Jul 27;17(7):e1009139. doi: 10.1371/journal.pcbi.1009139. eCollection 2021 Jul.
10
Virtual Connectomic Datasets in Alzheimer's Disease and Aging Using Whole-Brain Network Dynamics Modelling.
eNeuro. 2021 Jul 6;8(4). doi: 10.1523/ENEURO.0475-20.2021. Print 2021 Jul-Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验