Suppr超能文献

扩散蒙特卡罗中的总体规模偏差

Population size bias in diffusion Monte Carlo.

作者信息

Boninsegni Massimo, Moroni Saverio

机构信息

Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2G7.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056712. doi: 10.1103/PhysRevE.86.056712. Epub 2012 Nov 28.

Abstract

The size of the population of random walkers required to obtain converged estimates in diffusion Monte Carlo (DMC) increases dramatically with system size. We illustrate this by comparing ground state energies of small clusters of parahydrogen (up to 48 molecules) computed by DMC and path integral ground state (PIGS) techniques. We contend that the bias associated with a finite population of walkers is the most likely cause of quantitative numerical discrepancies between PIGS and DMC energy estimates reported in the literature, for this few-body Bose system. We discuss the viability of DMC as a general-purpose ground state technique, and argue that PIGS, and even finite temperature methods, enjoy more favorable scaling, and are therefore a superior option for systems of large size.

摘要

在扩散蒙特卡罗(DMC)中获得收敛估计所需的随机游走者数量会随着系统规模的增大而急剧增加。我们通过比较用DMC和路径积分基态(PIGS)技术计算的仲氢小团簇(最多48个分子)的基态能量来说明这一点。对于这个少体玻色系统,我们认为与有限数量的游走者相关的偏差是文献中报道的PIGS和DMC能量估计之间定量数值差异的最可能原因。我们讨论了DMC作为一种通用基态技术的可行性,并认为PIGS,甚至有限温度方法,具有更有利的标度,因此对于大尺寸系统是更优的选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验