Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA.
Phys Rev Lett. 2012 Nov 9;109(19):190501. doi: 10.1103/PhysRevLett.109.190501. Epub 2012 Nov 8.
Determining the optimal implementation of a quantum gate is critical for designing a quantum computer. We consider the crucial task of efficiently decomposing a general single-qubit quantum gate into a sequence of fault-tolerant quantum operations. For a given single-qubit circuit, we construct an optimal gate sequence consisting of fault-tolerant Hadamard (H) and π/8 rotations (T). Our scheme is based on a novel canonical form for single-qubit quantum circuits and the corresponding rules for exactly reducing a general single-qubit circuit to our canonical form. The result is optimal in the number of T gates. We demonstrate that a precomputed epsilon net of canonical circuits in combination with our scheme lowers the depth of approximation circuits by up to 3 orders of magnitude compared to previously reported results.
确定量子门的最佳实现对于设计量子计算机至关重要。我们考虑了一个关键任务,即如何有效地将一般的单量子比特量子门分解为一系列容错量子操作。对于给定的单量子比特电路,我们构建了一个最优门序列,由容错的 Hadamard(H)和π/8 旋转(T)组成。我们的方案基于单量子比特量子电路的一种新的规范形式和将一般单量子比特电路精确地约化为我们的规范形式的相应规则。该结果在 T 门的数量上是最优的。我们证明,与以前报道的结果相比,使用规范电路的预计算 ε 网络和我们的方案相结合,可以将逼近电路的深度降低多达 3 个数量级。