Suppr超能文献

纠错量子位的容错控制。

Fault-tolerant control of an error-corrected qubit.

机构信息

Joint Quantum Institute, Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, USA.

Department of Physics, University of Maryland, College Park, MD, USA.

出版信息

Nature. 2021 Oct;598(7880):281-286. doi: 10.1038/s41586-021-03928-y. Epub 2021 Oct 4.

Abstract

Quantum error correction protects fragile quantum information by encoding it into a larger quantum system. These extra degrees of freedom enable the detection and correction of errors, but also increase the control complexity of the encoded logical qubit. Fault-tolerant circuits contain the spread of errors while controlling the logical qubit, and are essential for realizing error suppression in practice. Although fault-tolerant design works in principle, it has not previously been demonstrated in an error-corrected physical system with native noise characteristics. Here we experimentally demonstrate fault-tolerant circuits for the preparation, measurement, rotation and stabilizer measurement of a Bacon-Shor logical qubit using 13 trapped ion qubits. When we compare these fault-tolerant protocols to non-fault-tolerant protocols, we see significant reductions in the error rates of the logical primitives in the presence of noise. The result of fault-tolerant design is an average state preparation and measurement error of 0.6 per cent and a Clifford gate error of 0.3 per cent after offline error correction. In addition, we prepare magic states with fidelities that exceed the distillation threshold, demonstrating all of the key single-qubit ingredients required for universal fault-tolerant control. These results demonstrate that fault-tolerant circuits enable highly accurate logical primitives in current quantum systems. With improved two-qubit gates and the use of intermediate measurements, a stabilized logical qubit can be achieved.

摘要

量子纠错通过将脆弱的量子信息编码到更大的量子系统中来保护它。这些额外的自由度使错误的检测和纠正成为可能,但也增加了编码逻辑量子比特的控制复杂性。容错电路在控制逻辑量子比特的同时包含了错误的传播,对于在实践中实现错误抑制是必不可少的。虽然容错设计在原理上是可行的,但以前还没有在具有本地噪声特性的纠错物理系统中得到证明。在这里,我们使用 13 个囚禁离子量子比特,实验演示了 Bacon-Shor 逻辑量子比特的制备、测量、旋转和稳定子测量的容错电路。当我们将这些容错协议与非容错协议进行比较时,我们会看到在存在噪声的情况下,逻辑原语的错误率显著降低。容错设计的结果是,经过离线纠错后,平均状态制备和测量误差为 0.6%,Clifford 门误差为 0.3%。此外,我们还以超过蒸馏阈值的保真度制备了魔术态,展示了通用容错控制所需的所有关键单量子比特成分。这些结果表明,容错电路能够在当前量子系统中实现高度精确的逻辑原语。随着双量子比特门的改进和中间测量的使用,可以实现稳定的逻辑量子比特。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验