Joint Quantum Institute, Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, USA.
Department of Physics, University of Maryland, College Park, MD, USA.
Nature. 2021 Oct;598(7880):281-286. doi: 10.1038/s41586-021-03928-y. Epub 2021 Oct 4.
Quantum error correction protects fragile quantum information by encoding it into a larger quantum system. These extra degrees of freedom enable the detection and correction of errors, but also increase the control complexity of the encoded logical qubit. Fault-tolerant circuits contain the spread of errors while controlling the logical qubit, and are essential for realizing error suppression in practice. Although fault-tolerant design works in principle, it has not previously been demonstrated in an error-corrected physical system with native noise characteristics. Here we experimentally demonstrate fault-tolerant circuits for the preparation, measurement, rotation and stabilizer measurement of a Bacon-Shor logical qubit using 13 trapped ion qubits. When we compare these fault-tolerant protocols to non-fault-tolerant protocols, we see significant reductions in the error rates of the logical primitives in the presence of noise. The result of fault-tolerant design is an average state preparation and measurement error of 0.6 per cent and a Clifford gate error of 0.3 per cent after offline error correction. In addition, we prepare magic states with fidelities that exceed the distillation threshold, demonstrating all of the key single-qubit ingredients required for universal fault-tolerant control. These results demonstrate that fault-tolerant circuits enable highly accurate logical primitives in current quantum systems. With improved two-qubit gates and the use of intermediate measurements, a stabilized logical qubit can be achieved.
量子纠错通过将脆弱的量子信息编码到更大的量子系统中来保护它。这些额外的自由度使错误的检测和纠正成为可能,但也增加了编码逻辑量子比特的控制复杂性。容错电路在控制逻辑量子比特的同时包含了错误的传播,对于在实践中实现错误抑制是必不可少的。虽然容错设计在原理上是可行的,但以前还没有在具有本地噪声特性的纠错物理系统中得到证明。在这里,我们使用 13 个囚禁离子量子比特,实验演示了 Bacon-Shor 逻辑量子比特的制备、测量、旋转和稳定子测量的容错电路。当我们将这些容错协议与非容错协议进行比较时,我们会看到在存在噪声的情况下,逻辑原语的错误率显著降低。容错设计的结果是,经过离线纠错后,平均状态制备和测量误差为 0.6%,Clifford 门误差为 0.3%。此外,我们还以超过蒸馏阈值的保真度制备了魔术态,展示了通用容错控制所需的所有关键单量子比特成分。这些结果表明,容错电路能够在当前量子系统中实现高度精确的逻辑原语。随着双量子比特门的改进和中间测量的使用,可以实现稳定的逻辑量子比特。