IBM Watson Research Center, Yorktown Heights, New York 10598, USA.
Phys Rev Lett. 2012 Nov 16;109(20):207202. doi: 10.1103/PhysRevLett.109.207202.
Frustration-free (FF) spin chains have a property that their ground state minimizes all individual terms in the chain Hamiltonian. We ask how entangled the ground state of a FF quantum spin-s chain with nearest-neighbor interactions can be for small values of s. While FF spin-1/2 chains are known to have unentangled ground states, the case s=1 remains less explored. We propose the first example of a FF translation-invariant spin-1 chain that has a unique highly entangled ground state and exhibits some signatures of a critical behavior. The ground state can be viewed as the uniform superposition of balanced strings of left and right brackets separated by empty spaces. Entanglement entropy of one half of the chain scales as 1/2 log n+O(1), where n is the number of spins. We prove that the energy gap above the ground state is polynomial in 1/n. The proof relies on a new result concerning statistics of Dyck paths which might be of independent interest.
无挫败感(FF)自旋链具有这样的性质,即其基态最小化了链哈密顿量中的所有单个项。我们想知道对于较小的 s 值,具有最近邻相互作用的 FF 量子自旋-s 链的基态可以有多纠缠。虽然 FF 自旋-1/2 链的基态已知是无纠缠的,但 s=1 的情况仍较少被探索。我们提出了第一个 FF 平移不变自旋-1 链的例子,该链具有独特的高度纠缠基态,并表现出一些临界行为的特征。基态可以看作是由左括号和右括号组成的平衡字符串的均匀叠加,这些字符串之间有空隙。链的一半的纠缠熵按 1/2 log n+O(1) 缩放,其中 n 是自旋的数量。我们证明了基态以上的能隙是多项式的 1/n。该证明依赖于关于 Dyck 路径统计的一个新结果,这可能具有独立的兴趣。