Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
Cell. 2012 Dec 7;151(6):1296-307. doi: 10.1016/j.cell.2012.11.002.
The allosteric mechanism of Hsp70 molecular chaperones enables ATP binding to the N-terminal nucleotide-binding domain (NBD) to alter substrate affinity to the C-terminal substrate-binding domain (SBD) and substrate binding to enhance ATP hydrolysis. Cycling between ATP-bound and ADP/substrate-bound states requires Hsp70s to visit a state with high ATPase activity and fast on/off kinetics of substrate binding. We have trapped this "allosterically active" state for the E. coli Hsp70, DnaK, and identified how interactions among the NBD, the β subdomain of the SBD, the SBD α-helical lid, and the conserved hydrophobic interdomain linker enable allosteric signal transmission between ligand-binding sites. Allostery in Hsp70s results from an energetic tug-of-war between domain conformations and formation of two orthogonal interfaces: between the NBD and SBD, and between the helical lid and the β subdomain of the SBD. The resulting energetic tension underlies Hsp70 functional properties and enables them to be modulated by ligands and cochaperones and "tuned" through evolution.
Hsp70 分子伴侣的别构机制使 ATP 结合到 N 端核苷酸结合域 (NBD),从而改变底物与 C 端底物结合域 (SBD) 的亲和力,并促进底物结合以增强 ATP 水解。在 ATP 结合和 ADP/底物结合状态之间循环需要 Hsp70 经历一种具有高 ATP 酶活性和快速底物结合的开/关动力学的状态。我们已经捕获了大肠杆菌 Hsp70、DnaK 的这种“别构活性”状态,并确定了 NBD、SBD 的β亚结构域、SBD α-螺旋盖和保守的疏水性结构域间连接子之间的相互作用如何在配体结合位点之间传递别构信号。Hsp70 中的别构作用源于构象之间的能量拔河,以及两个正交界面的形成:NBD 和 SBD 之间,以及螺旋盖和 SBD 的β亚结构域之间。由此产生的能量张力是 Hsp70 功能特性的基础,并使它们能够被配体和共伴侣调节,并通过进化“调谐”。