Zubik Monika, Luchowski Rafal, Puzio Michal, Janik Ewa, Bednarska Joanna, Grudzinski Wojciech, Gruszecki Wieslaw I
Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, Poland.
Biochim Biophys Acta. 2013 Mar;1827(3):355-64. doi: 10.1016/j.bbabio.2012.11.013. Epub 2012 Dec 3.
Overexcitation of the photosynthetic apparatus is potentially dangerous because it can cause oxidative damage. Photoprotection realized via the feedback de-excitation in the pigment-protein light-harvesting complex LHCII, embedded in the chloroplast lipid environment, was studied with use of the steady-state and time-resolved fluorescence spectroscopy techniques. Illumination of LHCII results in the pronounced singlet excitation quenching, demonstrated by decreased quantum yield of the chlorophyll a fluorescence and shortening of the fluorescence lifetimes. Analysis of the 77K chlorophyll a fluorescence emission spectra reveals that the light-driven excitation quenching in LHCII is associated with the intensity increase of the spectral band in the region of 700nm, relative to the principal band at 680nm. The average chlorophyll a fluorescence lifetime at 700nm changes drastically upon temperature decrease: from 1.04ns at 300K to 3.63ns at 77K. The results of the experiments lead us to conclude that: (i) the 700nm band is associated with the inter-trimer interactions which result in the formation of the chlorophyll low-energy states acting as energy traps and non-radiative dissipation centers; (ii) the Arrhenius analysis, supported by the results of the FTIR measurements, suggests that the photo-reaction can be associated with breaking of hydrogen bonds. Possible involvement of photo-isomerization of neoxanthin, reported previously (Biochim. Biophys. Acta 1807 (2011) 1237-1243) in generation of the low-energy traps in LHCII is discussed.
光合机构的过度激发具有潜在危险性,因为它会导致氧化损伤。我们利用稳态和时间分辨荧光光谱技术,研究了通过嵌入叶绿体脂质环境中的色素 - 蛋白质捕光复合体LHCII中的反馈去激发实现的光保护作用。LHCII的光照导致明显的单线态激发猝灭,这通过叶绿素a荧光量子产率的降低和荧光寿命的缩短得以证明。对77K叶绿素a荧光发射光谱的分析表明,LHCII中光驱动的激发猝灭与700nm区域光谱带强度相对于680nm主带的增加有关。700nm处叶绿素a的平均荧光寿命在温度降低时急剧变化:从300K时的1.04ns变为77K时的3.63ns。实验结果使我们得出以下结论:(i)700nm波段与三聚体间相互作用有关,这种相互作用导致形成作为能量陷阱和非辐射耗散中心的叶绿素低能态;(ii)由傅里叶变换红外光谱测量结果支持的阿伦尼乌斯分析表明,光反应可能与氢键的断裂有关。本文还讨论了之前报道的新黄质的光异构化(《生物化学与生物物理学报》1807 (2011) 1237 - 1243)在LHCII中低能陷阱产生过程中可能的参与情况。