Suppr超能文献

聚集态核心天线复合物中缺乏远红发射带。

Absence of far-red emission band in aggregated core antenna complexes.

机构信息

Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands; Department of Physics, Jagannath University, Dhaka, Bangladesh.

Department of Physics, Jagannath University, Dhaka, Bangladesh.

出版信息

Biophys J. 2021 May 4;120(9):1680-1691. doi: 10.1016/j.bpj.2021.02.037. Epub 2021 Mar 4.

Abstract

Reported herein is a Stark fluorescence spectroscopy study performed on photosystem II core antenna complexes CP43 and CP47 in their native and aggregated states. The systematic mathematical modeling of the Stark fluorescence spectra with the aid of conventional Liptay formalism revealed that induction of aggregation in both the core antenna complexes via detergent removal results in a single quenched species characterized by a remarkably broad and inhomogenously broadened emission lineshape peaking around 700 nm. The quenched species possesses a fairly large magnitude of charge-transfer character. From the analogy with the results from aggregated peripheral antenna complexes, the quenched species is thought to originate from the enhanced chlorophyll-chlorophyll interaction due to aggregation. However, in contrast, aggregation of both core antenna complexes did not produce a far-red emission band at ∼730 nm, which was identified in most of the aggregated peripheral antenna complexes. The 730-nm emission band of the aggregated peripheral antenna complexes was attributed to the enhanced chlorophyll-carotenoid (lutein1) interaction in the terminal emitter locus. Therefore, it is very likely that the no occurrence of the far-red band in the aggregated core antenna complexes is directly related to the absence of lutein1 in their structures. The absence of the far-red band also suggests the possibility that aggregation-induced conformational change of the core antenna complexes does not yield a chlorophyll-carotenoid interaction associated energy dissipation channel.

摘要

本文报道了在天然态和聚集态下对光系统 II 核心天线复合物 CP43 和 CP47 进行斯塔克荧光光谱研究的结果。借助传统的利普泰形式主义对斯塔克荧光光谱进行系统的数学建模表明,通过去污剂去除诱导两种核心天线复合物聚集,会导致出现一种单一的猝灭物种,其发射谱线具有显著的宽化和非均匀展宽,峰值在 700nm 左右。猝灭物种具有相当大的电荷转移特征。从与聚集的外周天线复合物的结果类比来看,猝灭物种被认为是由于聚集导致叶绿素-叶绿素相互作用增强而产生的。然而,与大多数聚集的外周天线复合物不同的是,两种核心天线复合物的聚集并没有产生约 730nm 的远红发射带。聚集的外周天线复合物的 730nm 发射带归因于末端发射体位置中叶绿素-类胡萝卜素(叶黄素 1)相互作用的增强。因此,核心天线复合物中没有远红带的出现极有可能与它们的结构中缺少叶黄素 1 直接相关。远红带的缺失也表明,聚集诱导的核心天线复合物构象变化可能不会产生与叶绿素-类胡萝卜素相互作用相关的能量耗散通道。

相似文献

1
Absence of far-red emission band in aggregated core antenna complexes.
Biophys J. 2021 May 4;120(9):1680-1691. doi: 10.1016/j.bpj.2021.02.037. Epub 2021 Mar 4.
2
Identification and characterization of multiple emissive species in aggregated minor antenna complexes.
Biochim Biophys Acta. 2016 Dec;1857(12):1917-1924. doi: 10.1016/j.bbabio.2016.09.010. Epub 2016 Sep 23.
9
Changes in the energy transfer pathways within photosystem II antenna induced by xanthophyll cycle activity.
J Phys Chem B. 2013 May 16;117(19):5841-7. doi: 10.1021/jp402469d. Epub 2013 May 3.
10
Direct observation of triplet energy transfer between chlorophylls and carotenoids in the core antenna of photosystem I from Thermosynechococcus elongatus.
Biochim Biophys Acta Bioenerg. 2024 Jan 1;1865(1):149016. doi: 10.1016/j.bbabio.2023.149016. Epub 2023 Oct 11.

引用本文的文献

1
Unveiling large charge transfer character of PSII in an iron-deficient cyanobacterial membrane: A Stark fluorescence spectroscopy study.
Photosynth Res. 2024 Jun;160(2-3):77-86. doi: 10.1007/s11120-024-01099-1. Epub 2024 Apr 15.
2
The Structural and Spectral Features of Light-Harvesting Complex II Proteoliposomes Mimic Those of Native Thylakoid Membranes.
J Phys Chem Lett. 2022 Jun 23;13(24):5683-5691. doi: 10.1021/acs.jpclett.2c01019. Epub 2022 Jun 16.

本文引用的文献

2
Charge transfer states in phycobilisomes.
Biochim Biophys Acta Bioenerg. 2020 Jul 1;1861(7):148187. doi: 10.1016/j.bbabio.2020.148187. Epub 2020 Mar 12.
3
Stark fluorescence spectroscopy on peridinin-chlorophyll-protein complex of dinoflagellate, Amphidinium carterae.
Photosynth Res. 2020 Mar;143(3):233-239. doi: 10.1007/s11120-019-00688-9. Epub 2019 Nov 25.
4
Structural insight into light harvesting for photosystem II in green algae.
Nat Plants. 2019 Dec;5(12):1320-1330. doi: 10.1038/s41477-019-0543-4. Epub 2019 Nov 25.
5
Characterization of Protein Radicals in Arabidopsis.
Front Physiol. 2019 Aug 13;10:958. doi: 10.3389/fphys.2019.00958. eCollection 2019.
6
Dynamics of the mixed exciton and charge-transfer states in light-harvesting complex Lhca4: Hierarchical equation approach.
Biochim Biophys Acta Bioenerg. 2018 Sep;1859(9):655-665. doi: 10.1016/j.bbabio.2018.06.016. Epub 2018 Jul 5.
8
Identification and characterization of multiple emissive species in aggregated minor antenna complexes.
Biochim Biophys Acta. 2016 Dec;1857(12):1917-1924. doi: 10.1016/j.bbabio.2016.09.010. Epub 2016 Sep 23.
10
Visualizing the dynamic structure of the plant photosynthetic membrane.
Nat Plants. 2015 Nov 3;1:15161. doi: 10.1038/nplants.2015.161.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验