Department for Radiation Oncology and Experimental Cancer Research, Ghent University, De Pintelaan 185, 9000 Gent, Belgium.
Phys Med Biol. 2013 Jan 7;58(1):63-85. doi: 10.1088/0031-9155/58/1/63. Epub 2012 Dec 6.
In MRI (PAGAT) polymer gel dosimetry, there exists some controversy on the validity of 3D dose verifications of clinical treatments. The relative contribution of important sources of uncertainty in MR scanning to the overall accuracy and precision of 3D MRI polymer gel dosimetry is quantified in this study. The performance in terms of signal-to-noise and imaging artefacts was evaluated on three different MR scanners (two 1.5 T and a 3 T scanner). These include: (1) B₀-field inhomogeneity, (2) B₁-field inhomogeneity, (3) dielectric effects (losses and standing waves) and (4) temperature inhomogeneity during scanning. B₀-field inhomogeneities that amount to maximum 5 ppm result in dose deviations of up to 4.3% and deformations of up to 5 pixels. Compensation methods are proposed. B₁-field inhomogeneities were found to induce R₂ variations in large anthropomorphic phantoms both at 1.5 and 3 T. At 1.5 T these effects are mainly caused by the coil geometry resulting in dose deviations of up to 25%. After the correction of the R₂ maps using a heuristic flip angle-R₂ relation, these dose deviations are reduced to 2.4%. At 3 T, the dielectric properties of the gel phantoms are shown to strongly influence B₁-field homogeneity, hence R₂ homogeneity, especially of large anthropomorphic phantoms. The low electrical conductivity of polymer gel dosimeters induces standing wave patterns resulting in dose deviations up to 50%. Increasing the conductivity of the gel by adding NaCl reduces the dose deviation to 25% after which the post-processing is successful in reducing the remaining inhomogeneities caused by the coil geometry to within 2.4%. The measurements are supported by computational modelling of the B₁-field. Finally, temperature fluctuations of 1 °C frequently encountered in clinical MRI scanners result in dose deviations up to 15%. It is illustrated that with adequate temperature stabilization, the dose uncertainty is reduced to within 2.58%.
在 MRI(PAGAT)聚合物凝胶剂量测定中,对于临床治疗的 3D 剂量验证的有效性存在一些争议。本研究定量评估了磁共振扫描中重要不确定源对 3D MRI 聚合物凝胶剂量测定整体准确性和精度的相对贡献。在三种不同的磁共振扫描仪(两台 1.5T 和一台 3T 扫描仪)上评估了其在信噪比和成像伪影方面的性能。这些因素包括:(1)B₀场不均匀性,(2)B₁场不均匀性,(3)介电效应(损耗和驻波)以及(4)扫描过程中的温度不均匀性。最大可达 5ppm 的 B₀场不均匀性会导致剂量偏差高达 4.3%和变形高达 5 个像素。提出了补偿方法。在 1.5T 和 3T 时,发现 B₁场不均匀性会导致大型人体模型的 R₂变化。在 1.5T 时,这些效应主要是由线圈几何形状引起的,导致剂量偏差高达 25%。使用启发式翻转角-R₂关系校正 R₂图后,这些剂量偏差减少到 2.4%。在 3T 时,凝胶模型的介电特性被证明强烈影响 B₁场均匀性,从而影响 R₂均匀性,特别是对于大型人体模型。聚合物凝胶剂量计的低电导率会引起驻波模式,导致剂量偏差高达 50%。通过添加 NaCl 增加凝胶的电导率,可将剂量偏差降低至 25%,之后通过后处理成功将线圈几何形状引起的剩余不均匀性降低至 2.4%以内。测量结果得到了 B₁场的计算建模的支持。最后,临床磁共振扫描仪中经常遇到的 1°C 的温度波动会导致剂量偏差高达 15%。结果表明,通过适当的温度稳定化,可以将剂量不确定性降低到 2.58%以内。