Suppr超能文献

环境稳定性对维持手臂姿势时终点阻抗调节的影响。

Influence of environmental stability on the regulation of end-point impedance during the maintenance of arm posture.

机构信息

Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, USA.

出版信息

J Neurophysiol. 2013 Feb;109(4):1045-54. doi: 10.1152/jn.00135.2012. Epub 2012 Dec 5.

Abstract

Many common tasks compromise arm stability along specific directions. Such tasks can be completed only if the impedance of the arm is sufficient to compensate for the destabilizing effects of the task. During movement, it has been demonstrated that the direction of maximal arm stiffness, the static component of impedance, can be preferentially increased to compensate for directionally unstable environments. In contrast, numerous studies have shown that such control is not possible during postural tasks. It remains unknown if these findings represent a fundamental difference in the control of arm mechanics during posture and movement or an involuntary response to the destabilizing environments used in the movement studies but not yet tested during posture maintenance. Our goal was to quantify how arm impedance is adapted during postural tasks that compromise stability along specific directions. Our results demonstrate that impedance can be modulated to compensate for these instabilities during postural tasks but that the changes are modest relative to those previously reported during reaching. Our observed changes were primarily in the magnitude of end-point stiffness, but these were not sufficient to alter the direction of maximal stiffness. Furthermore, there were no substantial changes in the magnitude of end-point viscosity or inertia, suggesting that the primary change to arm impedance was a selective increase in stiffness to compensate for the destabilizing stiffness properties of the environment. We suggest that these modest changes provide an initial involuntary response to destabilizing environments prior to the larger changes that can be affected through voluntary interventions.

摘要

许多常见的任务都会沿着特定方向影响手臂的稳定性。只有当手臂的阻抗足够大以补偿任务的不稳定性时,这些任务才能完成。在运动过程中,已经证明最大手臂刚度的方向,即阻抗的静态分量,可以优先增加以补偿方向不稳定的环境。相比之下,许多研究表明,在姿势任务中,无法进行这种控制。目前尚不清楚这些发现是代表姿势和运动中手臂力学控制的基本差异,还是代表在运动研究中使用的不稳定环境的无意识反应,但尚未在姿势维持期间进行测试。我们的目标是量化在沿特定方向影响稳定性的姿势任务中,手臂阻抗是如何适应的。我们的结果表明,在姿势任务中可以调节阻抗以补偿这些不稳定性,但与以前在伸展运动中报告的变化相比,这些变化相对较小。我们观察到的变化主要是端点刚度的大小,但这些变化不足以改变最大刚度的方向。此外,端点粘性或惯性的大小没有明显变化,这表明手臂阻抗的主要变化是选择性地增加刚度以补偿环境的不稳定刚度特性。我们认为,这些适度的变化是对不稳定环境的初始无意识反应,而较大的变化可以通过自愿干预来影响。

相似文献

1
Influence of environmental stability on the regulation of end-point impedance during the maintenance of arm posture.
J Neurophysiol. 2013 Feb;109(4):1045-54. doi: 10.1152/jn.00135.2012. Epub 2012 Dec 5.
2
Use of self-selected postures to regulate multi-joint stiffness during unconstrained tasks.
PLoS One. 2009;4(5):e5411. doi: 10.1371/journal.pone.0005411. Epub 2009 May 1.
3
Interactions between limb and environmental mechanics influence stretch reflex sensitivity in the human arm.
J Neurophysiol. 2010 Jan;103(1):429-40. doi: 10.1152/jn.00679.2009. Epub 2009 Nov 11.
4
Effects of environmental instabilities on endpoint stiffness during the maintenance of human arm posture.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5938-41. doi: 10.1109/IEMBS.2009.5334751.
5
Effect of age on stiffness modulation during postural maintenance of the arm.
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650395. doi: 10.1109/ICORR.2013.6650395.
6
Cerebellar ataxia impairs modulation of arm stiffness during postural maintenance.
J Neurophysiol. 2013 Oct;110(7):1611-20. doi: 10.1152/jn.00294.2013. Epub 2013 Jul 10.
7
Impedance characteristics of a neuromusculoskeletal model of the human arm I. Posture control.
Biol Cybern. 1999 Nov;81(5-6):475-94. doi: 10.1007/s004220050577.
8
On the effect of muscular cocontraction on the 3-D human arm impedance.
IEEE Trans Biomed Eng. 2014 Oct;61(10):2602-8. doi: 10.1109/TBME.2014.2323938. Epub 2014 May 14.
9
Biomechanical constraints on the feedforward regulation of endpoint stiffness.
J Neurophysiol. 2012 Oct;108(8):2083-91. doi: 10.1152/jn.00330.2012. Epub 2012 Jul 25.
10
Endpoint stiffness of the arm is directionally tuned to instability in the environment.
J Neurosci. 2007 Jul 18;27(29):7705-16. doi: 10.1523/JNEUROSCI.0968-07.2007.

引用本文的文献

1
Tuning of task-relevant stiffness in multiple directions.
Sci Rep. 2025 Aug 15;15(1):29916. doi: 10.1038/s41598-025-14989-8.
2
Stroke impairs the proactive control of dynamic balance during predictable treadmill accelerations.
bioRxiv. 2024 Oct 20:2024.10.18.618939. doi: 10.1101/2024.10.18.618939.
3
Optimism persists when walking in unpredictable environments.
Sci Rep. 2023 Apr 26;13(1):6853. doi: 10.1038/s41598-023-33662-6.
4
Body Mechanics, Optimality, and Sensory Feedback in the Human Control of Complex Objects.
Neural Comput. 2023 Apr 18;35(5):853-895. doi: 10.1162/neco_a_01576.
6
Leveraging Joint Mechanics Simplifies the Neural Control of Movement.
Front Integr Neurosci. 2022 Mar 21;16:802608. doi: 10.3389/fnint.2022.802608. eCollection 2022.
7
Quantifying the Multidimensional Impedance of the Shoulder During Volitional Contractions.
Ann Biomed Eng. 2020 Sep;48(9):2354-2369. doi: 10.1007/s10439-020-02509-w. Epub 2020 Apr 16.
8
Experimentally quantifying the feasible torque space of the human shoulder.
J Electromyogr Kinesiol. 2022 Feb;62:102313. doi: 10.1016/j.jelekin.2019.05.014. Epub 2019 May 23.
9
Using Feedback Control to Reduce Limb Impedance during Forceful Contractions.
Sci Rep. 2017 Aug 24;7(1):9317. doi: 10.1038/s41598-017-10181-9.
10
Beyond muscles stiffness: importance of state-estimation to account for very fast motor corrections.
PLoS Comput Biol. 2014 Oct 9;10(10):e1003869. doi: 10.1371/journal.pcbi.1003869. eCollection 2014 Oct.

本文引用的文献

1
Biomechanical constraints on the feedforward regulation of endpoint stiffness.
J Neurophysiol. 2012 Oct;108(8):2083-91. doi: 10.1152/jn.00330.2012. Epub 2012 Jul 25.
2
Model-based estimation of knee stiffness.
IEEE Trans Biomed Eng. 2012 Sep;59(9):2604-12. doi: 10.1109/TBME.2012.2207895. Epub 2012 Jul 11.
3
Contributions of feed-forward and feedback strategies at the human ankle during control of unstable loads.
Exp Brain Res. 2012 Mar;217(1):53-66. doi: 10.1007/s00221-011-2972-9. Epub 2011 Dec 15.
4
Primary motor cortex underlies multi-joint integration for fast feedback control.
Nature. 2011 Sep 28;478(7369):387-90. doi: 10.1038/nature10436.
5
Impedance control is selectively tuned to multiple directions of movement.
J Neurophysiol. 2011 Nov;106(5):2737-48. doi: 10.1152/jn.00079.2011. Epub 2011 Aug 17.
6
Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm.
J Neurophysiol. 2011 Apr;105(4):1633-41. doi: 10.1152/jn.00537.2010. Epub 2011 Feb 2.
7
Closed-loop identification: application to the estimation of limb impedance in a compliant environment.
IEEE Trans Biomed Eng. 2011 Mar;58(3):521-30. doi: 10.1109/TBME.2010.2096424. Epub 2010 Dec 3.
8
Effects of environmental instabilities on endpoint stiffness during the maintenance of human arm posture.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5938-41. doi: 10.1109/IEMBS.2009.5334751.
9
Interactions between limb and environmental mechanics influence stretch reflex sensitivity in the human arm.
J Neurophysiol. 2010 Jan;103(1):429-40. doi: 10.1152/jn.00679.2009. Epub 2009 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验