Suppr超能文献

超越肌肉僵硬:状态估计对快速运动校正的重要性。

Beyond muscles stiffness: importance of state-estimation to account for very fast motor corrections.

作者信息

Crevecoeur Frédéric, Scott Stephen H

机构信息

Centre for Neuroscience Studies, Queen's University, Kingston, Canada.

Centre for Neuroscience Studies, Queen's University, Kingston, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.

出版信息

PLoS Comput Biol. 2014 Oct 9;10(10):e1003869. doi: 10.1371/journal.pcbi.1003869. eCollection 2014 Oct.

Abstract

Feedback delays are a major challenge for any controlled process, and yet we are able to easily control limb movements with speed and grace. A popular hypothesis suggests that the brain largely mitigates the impact of feedback delays (∼50 ms) by regulating the limb intrinsic visco-elastic properties (or impedance) with muscle co-contraction, which generates forces proportional to changes in joint angle and velocity with zero delay. Although attractive, this hypothesis is often based on estimates of limb impedance that include neural feedback, and therefore describe the entire motor system. In addition, this approach does not systematically take into account that muscles exhibit high intrinsic impedance only for small perturbations (short-range impedance). As a consequence, it remains unclear how the nervous system handles large perturbations, as well as disturbances encountered during movement when short-range impedance cannot contribute. We address this issue by comparing feedback responses to load pulses applied to the elbow of human subjects with theoretical simulations. After validating the model parameters, we show that the ability of humans to generate fast and accurate corrective movements is compatible with a control strategy based on state estimation. We also highlight the merits of delay-uncompensated robust control, which can mitigate the impact of internal model errors, but at the cost of slowing feedback corrections. We speculate that the puzzling observation of presynaptic inhibition of peripheral afferents in the spinal cord at movement onset helps to counter the destabilizing transition from high muscle impedance during posture to low muscle impedance during movement.

摘要

反馈延迟是任何受控过程面临的一项重大挑战,然而我们却能够轻松且优雅地控制肢体运动。一种流行的假说认为,大脑主要通过肌肉共同收缩调节肢体固有粘弹性特性(或阻抗)来减轻反馈延迟(约50毫秒)的影响,肌肉共同收缩会产生与关节角度和速度变化成比例的力,且延迟为零。尽管这一假说颇具吸引力,但它往往基于包含神经反馈的肢体阻抗估计,因此描述的是整个运动系统。此外,这种方法没有系统地考虑到肌肉仅在小扰动(短程阻抗)时才表现出高固有阻抗。因此,目前尚不清楚神经系统如何处理大扰动以及运动过程中遇到的干扰,因为此时短程阻抗无法发挥作用。我们通过将人类受试者肘部所受负载脉冲的反馈响应与理论模拟进行比较来解决这个问题。在验证模型参数后,我们表明人类产生快速且准确的纠正运动的能力与基于状态估计 的控制策略是兼容的。我们还强调了延迟未补偿的鲁棒控制的优点,它可以减轻内部模型误差的影响,但代价是减缓反馈校正。我们推测,在运动开始时脊髓中对周围传入神经进行突触前抑制这一令人困惑的观察结果,有助于抵消从姿势期间的高肌肉阻抗向运动期间的低肌肉阻抗转变时的不稳定状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75aa/4191878/bb32920516d5/pcbi.1003869.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验