Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS UMR, Université Montpellier I and II, France.
J Cell Sci. 2012 Oct 15;125(Pt 20):4703-11. doi: 10.1242/jcs.106351.
Fifteen years ago, it was proposed that the cell cycle in fission yeast can be driven by quantitative changes in the activity of a single protein kinase complex comprising a cyclin - namely cyclin B - and cyclin dependent kinase 1 (Cdk1). When its activity is low, Cdk1 triggers the onset of S phase; when its activity level exceeds a specific threshold, it promotes entry into mitosis. This model has redefined our understanding of the essential functional inputs that organize cell cycle progression, and its main principles now appear to be applicable to all eukaryotic cells. But how does a change in the activity of one kinase generate ordered progression through the cell cycle in order to separate DNA replication from mitosis? To answer this question, we must consider the biochemical processes that underlie the phosphorylation of Cdk1 substrates. In this Commentary, we discuss recent findings that have shed light on how the threshold levels of Cdk1 activity that are required for progression through each phase are determined, how an increase in Cdk activity generates directionality in the cell cycle, and why cell cycle transitions are abrupt rather than gradual. These considerations lead to a general quantitative model of cell cycle control, in which opposing kinase and phosphatase activities have an essential role in ensuring dynamic transitions.
十五年前,有人提出裂殖酵母的细胞周期可以通过单个蛋白激酶复合物活性的定量变化来驱动,该复合物由细胞周期蛋白 - 即细胞周期蛋白 B - 和细胞周期蛋白依赖性激酶 1(Cdk1)组成。当它的活性较低时,Cdk1 引发 S 期的开始;当它的活性水平超过特定阈值时,它促进进入有丝分裂。这个模型重新定义了我们对组织细胞周期进程的基本功能输入的理解,其主要原则现在似乎适用于所有真核细胞。但是,激酶活性的变化如何产生有序的细胞周期进展,以便将 DNA 复制与有丝分裂分开?为了回答这个问题,我们必须考虑构成 Cdk1 底物磷酸化的生化过程。在这篇评论中,我们讨论了最近的发现,这些发现阐明了如何确定通过每个阶段所需的 Cdk1 活性的阈值水平,Cdk 活性的增加如何在细胞周期中产生方向性,以及为什么细胞周期转变是突然的而不是渐进的。这些考虑因素导致了细胞周期控制的一般定量模型,其中对立的激酶和磷酸酶活性在确保动态转变方面起着重要作用。