Suppr超能文献

酵母中转座元件的进化基因组学。

Evolutionary genomics of transposable elements in Saccharomyces cerevisiae.

机构信息

School of Applied Sciences, University of Huddersfield, West Yorkshire, UK.

出版信息

PLoS One. 2012;7(11):e50978. doi: 10.1371/journal.pone.0050978. Epub 2012 Nov 30.

Abstract

Saccharomyces cerevisiae is one of the premier model systems for studying the genomics and evolution of transposable elements. The availability of the S. cerevisiae genome led to unprecedented insights into its five known transposable element families (the LTR retrotransposons Ty1-Ty5) in the years shortly after its completion. However, subsequent advances in bioinformatics tools for analysing transposable elements and the recent availability of genome sequences for multiple strains and species of yeast motivates new investigations into Ty evolution in S. cerevisiae. Here we provide a comprehensive phylogenetic and population genetic analysis of all Ty families in S. cerevisiae based on a systematic re-annotation of Ty elements in the S288c reference genome. We show that previous annotation efforts have underestimated the total copy number of Ty elements for all known families. In addition, we identify a new family of Ty3-like elements related to the S. paradoxus Ty3p which is composed entirely of degenerate solo LTRs. Phylogenetic analyses of LTR sequences identified three families with short-branch, recently active clades nested among long branch, inactive insertions (Ty1, Ty3, Ty4), one family with essentially all recently active elements (Ty2) and two families with only inactive elements (Ty3p and Ty5). Population genomic data from 38 additional strains of S. cerevisiae show that the majority of Ty insertions in the S288c reference genome are fixed in the species, with insertions in active clades being predominantly polymorphic and insertions in inactive clades being predominantly fixed. Finally, we use comparative genomic data to provide evidence that the Ty2 and Ty3p families have arisen in the S. cerevisiae genome by horizontal transfer. Our results demonstrate that the genome of a single individual contains important information about the state of TE population dynamics within a species and suggest that horizontal transfer may play an important role in shaping the genomic diversity of transposable elements in unicellular eukaryotes.

摘要

酿酒酵母是研究转座元件的基因组学和进化的主要模式生物系统之一。在酿酒酵母基因组完成后不久的几年里,由于能够获得用于分析转座元件的生物信息学工具的空前进展,以及用于多个酵母菌株和物种的基因组序列的可用性,人们对其五种已知的转座元件家族(LTR 反转录转座子 Ty1-Ty5)有了前所未有的了解。然而,对转座元件的生物信息学工具的进一步发展,以及用于多个酵母菌株和物种的基因组序列的可用性,促使人们对酿酒酵母 Ty 进化进行新的研究。在这里,我们基于对 S288c 参考基因组中转座元件的系统重新注释,对酿酒酵母中的所有 Ty 家族进行了全面的系统发育和群体遗传分析。我们表明,先前的注释工作低估了所有已知家族的 Ty 元件的总拷贝数。此外,我们鉴定了一个与 S. paradoxus Ty3p 相关的新的 Ty3 样元件家族,该家族完全由退化的 solo LTR 组成。LTR 序列的系统发育分析确定了三个家族,它们具有短枝、最近活跃的分支嵌套在长枝、不活跃的插入物中(Ty1、Ty3、Ty4),一个家族几乎完全具有最近活跃的元件(Ty2),两个家族只有不活跃的元件(Ty3p 和 Ty5)。来自 38 个额外的酿酒酵母菌株的群体基因组数据表明,S288c 参考基因组中的大多数 Ty 插入物在该物种中是固定的,在活跃分支中的插入物主要是多态的,而在不活跃分支中的插入物主要是固定的。最后,我们利用比较基因组数据提供了证据表明,Ty2 和 Ty3p 家族是通过水平转移在酿酒酵母基因组中产生的。我们的结果表明,单个个体的基因组包含有关物种中转座元件群体动态状态的重要信息,并表明水平转移可能在塑造单细胞真核生物中转座元件的基因组多样性方面发挥重要作用。

相似文献

1
Evolutionary genomics of transposable elements in Saccharomyces cerevisiae.
PLoS One. 2012;7(11):e50978. doi: 10.1371/journal.pone.0050978. Epub 2012 Nov 30.
4
Genome-wide analysis of intraspecific transposon diversity in yeast.
BMC Genomics. 2013 Jun 14;14:399. doi: 10.1186/1471-2164-14-399.
6
Genome evolution mediated by Ty elements in Saccharomyces.
Cytogenet Genome Res. 2005;110(1-4):63-9. doi: 10.1159/000084939.
7
Tempo and mode of Ty element evolution in Saccharomyces cerevisiae.
Genetics. 1999 Apr;151(4):1341-51. doi: 10.1093/genetics/151.4.1341.
8
Light and shadow on the mechanisms of integration site selection in yeast Ty retrotransposon families.
Curr Genet. 2021 Jun;67(3):347-357. doi: 10.1007/s00294-021-01154-7. Epub 2021 Feb 15.

引用本文的文献

1
Horizontal Transfer and Recombination Fuel Ty4 Retrotransposon Evolution in Saccharomyces.
Genome Biol Evol. 2025 Jan 6;17(1). doi: 10.1093/gbe/evaf004.
2
Genome sequencing of and its comparative analysis with malacostracan crustaceans.
3 Biotech. 2024 Nov;14(11):276. doi: 10.1007/s13205-024-04121-4. Epub 2024 Oct 23.
3
Natural Transposable Element Insertions Contribute to Host Fitness in Model Yeasts.
Genome Biol Evol. 2024 Sep 3;16(9). doi: 10.1093/gbe/evae193.
4
Rapid evolution of piRNA clusters in the ovary.
Genome Res. 2024 Jun 25;34(5):711-724. doi: 10.1101/gr.278062.123.
5
Evolution of a Restriction Factor by Domestication of a Yeast Retrotransposon.
Mol Biol Evol. 2024 Mar 1;41(3). doi: 10.1093/molbev/msae050.
6
Testing the Genomic Shock Hypothesis Using Transposable Element Expression in Yeast Hybrids.
Front Fungal Biol. 2021 Aug 23;2:729264. doi: 10.3389/ffunb.2021.729264. eCollection 2021.
7
Hijacking Transposable Elements for Saturation Mutagenesis in Fungi.
Front Fungal Biol. 2021 Apr 13;2:633876. doi: 10.3389/ffunb.2021.633876. eCollection 2021.

本文引用的文献

1
Retrotransposon profiling of RNA polymerase III initiation sites.
Genome Res. 2012 Apr;22(4):681-92. doi: 10.1101/gr.131219.111. Epub 2012 Jan 27.
2
A nucleosomal surface defines an integration hotspot for the Saccharomyces cerevisiae Ty1 retrotransposon.
Genome Res. 2012 Apr;22(4):704-13. doi: 10.1101/gr.129585.111. Epub 2012 Jan 4.
3
Retrotransposon Ty1 integration targets specifically positioned asymmetric nucleosomal DNA segments in tRNA hotspots.
Genome Res. 2012 Apr;22(4):693-703. doi: 10.1101/gr.129460.111. Epub 2012 Jan 4.
4
Genomic structure of and genome-wide recombination in the Saccharomyces cerevisiae S288C progenitor isolate EM93.
PLoS One. 2011;6(9):e25211. doi: 10.1371/journal.pone.0025211. Epub 2011 Sep 26.
5
Synthetic chromosome arms function in yeast and generate phenotypic diversity by design.
Nature. 2011 Sep 14;477(7365):471-6. doi: 10.1038/nature10403.
6
Access to DNA establishes a secondary target site bias for the yeast retrotransposon Ty5.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20351-6. doi: 10.1073/pnas.1103665108. Epub 2011 Jul 25.
7
Evidence for a high mutation rate at rapidly evolving yeast centromeres.
BMC Evol Biol. 2011 Jul 18;11:211. doi: 10.1186/1471-2148-11-211.
8
Comparative analysis of transposable elements in the melanogaster subgroup sequenced genomes.
Gene. 2011 Mar 1;473(2):100-9. doi: 10.1016/j.gene.2010.11.009. Epub 2010 Dec 14.
9
Pervasive horizontal transfer of rolling-circle transposons among animals.
Genome Biol Evol. 2010;2:656-64. doi: 10.1093/gbe/evq050. Epub 2010 Aug 6.
10
A role for host-parasite interactions in the horizontal transfer of transposons across phyla.
Nature. 2010 Apr 29;464(7293):1347-50. doi: 10.1038/nature08939.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验