Suppr超能文献

白血病细胞系分化为树突状细胞的可塑性和潜能。

The plasticity and potential of leukemia cell lines to differentiate into dendritic cells.

作者信息

Guo Qingwei, Zhang Leling, Li Fu, Jiang Guosheng

机构信息

Qilu Children's Hospital of Shandong University, Jinan 250022;

出版信息

Oncol Lett. 2012 Oct;4(4):595-600. doi: 10.3892/ol.2012.821. Epub 2012 Jul 25.

Abstract

Dendritic cells (DCs) are potent antigen-presenting cells that orchestrate the innate and adaptive immune systems to induce immunity. DCs are significant in maintaining immune tolerance towards self-antigens, organ transplantation and allergic responses. DCs are powerful adjuvants for eliciting T-cell immunity and are therefore considered primary targets for inducing immune responses in the prevention and treatment of infectious diseases and cancer. DCs have been increasingly applied in the immunotherapy of cancer worldwide during the last decade; however, a number of the highly specialized biological characteristics of DCs remain to be elucidated. Previous studies of human DCs have been constrained by certain difficulties, therefore the majority of studies have been carried out using in vitro model systems. Suitable cell lines with dendritic-like properties may provide valuable tools for the study of DC physiology and pathology. In the current review, various human DC line differentiation models are discussed. Certain cell lines provide valuable tools for studying the specific aspects of DC biology, despite variations in cell biological and immunological features when compared with primary DCs.

摘要

树突状细胞(DCs)是强大的抗原呈递细胞,可协调先天性和适应性免疫系统以诱导免疫。DCs在维持对自身抗原的免疫耐受、器官移植和过敏反应方面具有重要意义。DCs是引发T细胞免疫的强大佐剂,因此被视为在传染病和癌症的预防与治疗中诱导免疫反应的主要靶点。在过去十年中,DCs在全球范围内越来越多地应用于癌症免疫治疗;然而,DCs的许多高度专业化的生物学特性仍有待阐明。先前对人类DCs的研究受到某些困难的限制,因此大多数研究是使用体外模型系统进行的。具有树突状特性的合适细胞系可能为DC生理学和病理学研究提供有价值的工具。在当前综述中,讨论了各种人类DC系分化模型。尽管与原代DCs相比,细胞生物学和免疫学特征存在差异,但某些细胞系为研究DC生物学的特定方面提供了有价值的工具。

相似文献

1
The plasticity and potential of leukemia cell lines to differentiate into dendritic cells.
Oncol Lett. 2012 Oct;4(4):595-600. doi: 10.3892/ol.2012.821. Epub 2012 Jul 25.
2
Human and murine model cell lines for dendritic cell biology evaluated.
Immunol Lett. 2008 May 15;117(2):191-7. doi: 10.1016/j.imlet.2008.02.003. Epub 2008 Mar 11.
3
Outer membrane vesicles engineered to express membrane-bound antigen program dendritic cells for cross-presentation to CD8 T cells.
Acta Biomater. 2019 Jun;91:248-257. doi: 10.1016/j.actbio.2019.04.033. Epub 2019 Apr 17.
5
Dendritic cells and myeloid leukaemias: plasticity and commitment in cell differentiation.
Br J Haematol. 2007 Aug;138(3):281-90. doi: 10.1111/j.1365-2141.2007.06622.x.
6
Evaluating dendritic cells as an in vitro screening tool for immunotherapeutic formulations.
J Immunol Methods. 2018 Aug;459:55-62. doi: 10.1016/j.jim.2018.05.005. Epub 2018 May 23.
7
Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies.
Nanomedicine. 2010 Aug;6(4):523-9. doi: 10.1016/j.nano.2010.01.001. Epub 2010 Jan 18.
8
Dendritic cells from bench to bedside and back.
Immunol Lett. 2009 Feb 21;122(2):128-30. doi: 10.1016/j.imlet.2008.11.017. Epub 2008 Dec 31.
9
Regulatory dendritic cells in autoimmunity: A comprehensive review.
J Autoimmun. 2015 Sep;63:1-12. doi: 10.1016/j.jaut.2015.07.011. Epub 2015 Aug 5.
10
The dendritic cell tool for oral cancer treatment.
J Oral Maxillofac Pathol. 2019 Sep-Dec;23(3):326-329. doi: 10.4103/jomfp.JOMFP_325_19.

引用本文的文献

1
A human Caco-2-based co-culture model of the inflamed intestinal mucosa for particle toxicity studies.
In Vitro Model. 2023 Mar 24;2(1-2):43-64. doi: 10.1007/s44164-023-00047-y. eCollection 2023 Apr.
2
Soluble isoforms of the DC-SIGN receptor can increase the dengue virus infection in immature dendritic cells.
Braz J Infect Dis. 2024 Nov-Dec;28(6):103873. doi: 10.1016/j.bjid.2024.103873. Epub 2024 Sep 25.
4
Establishing Preferred Product Characterization for the Evaluation of RNA Vaccine Antigens.
Vaccines (Basel). 2019 Sep 27;7(4):131. doi: 10.3390/vaccines7040131.

本文引用的文献

1
Optimization and limitation of calcium ionophore to generate DCs from acute myeloid leukemic cells.
Cancer Res Treat. 2007 Dec;39(4):175-80. doi: 10.4143/crt.2007.39.4.175. Epub 2007 Dec 31.
3
Human dendritic cell line models for DC differentiation and clinical DC vaccination studies.
J Leukoc Biol. 2008 Dec;84(6):1364-73. doi: 10.1189/jlb.0208092. Epub 2008 Jul 29.
4
Interleukin-32 induces the differentiation of monocytes into macrophage-like cells.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3515-20. doi: 10.1073/pnas.0712381105. Epub 2008 Feb 22.
8
In vitro priming of tumor-specific cytotoxic T lymphocytes using allogeneic dendritic cells derived from the human MUTZ-3 cell line.
Cancer Immunol Immunother. 2006 Dec;55(12):1480-90. doi: 10.1007/s00262-006-0142-x. Epub 2006 Feb 9.
9
Functional and transcriptional profiling of MUTZ-3, a myeloid cell line acting as a model for dendritic cells.
Immunology. 2006 Feb;117(2):156-66. doi: 10.1111/j.1365-2567.2005.02274.x.
10
The cytokine-dependent MUTZ-3 cell line as an in vitro model for the screening of contact sensitizers.
Toxicol Appl Pharmacol. 2006 Apr 1;212(1):14-23. doi: 10.1016/j.taap.2005.06.018. Epub 2005 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验