Suppr超能文献

解析逆行信号通路:通过代谢组学和系统生物学驱动的方法寻找候选信号分子。

Unraveling retrograde signaling pathways: finding candidate signaling molecules via metabolomics and systems biology driven approaches.

机构信息

Brazilian Bioethanol Science and Technology Laboratory (Brazilian Center of Research in Energy and Materials) Campinas, Brazil.

出版信息

Front Plant Sci. 2012 Dec 5;3:267. doi: 10.3389/fpls.2012.00267. eCollection 2012.

Abstract

A tight coordination of biological processes between cellular compartments and organelles is crucial for the survival of any eukaryotic organism. According to cellular requirements, signals can be generated within organelles, such as chloroplasts and mitochondria, modulating the nuclear gene expression in a process called retrograde signaling. Whilst many research efforts have been focused on dissecting retrograde signaling pathways using biochemical and genetics approaches, metabolomics and systems biology driven studies have illustrated their great potential for hypotheses generation and for dissecting signaling networks in a rather unbiased or untargeted fashion. Recently, integrative genomics approaches, in which correlation analysis has been applied on transcript and metabolite profiling data of Arabidopsis thaliana, revealed the identification of metabolites which are putatively acting as mediators of nuclear gene expression. Complimentary, the continuous technological developments in the field of metabolomics per se has further demonstrated its potential as a very suitable readout to unravel metabolite-mediated signaling processes. As foundation for these studies here we outline and discuss recent advances in elucidating retrograde signaling molecules and pathways with an emphasis on metabolomics and systems biology driven approaches.

摘要

细胞区室和细胞器之间的生物过程紧密协调对于任何真核生物的生存都是至关重要的。根据细胞的需求,信号可以在细胞器(如叶绿体和线粒体)内产生,从而调节核基因表达,这一过程称为逆行信号转导。虽然许多研究工作都集中在使用生化和遗传学方法来剖析逆行信号通路,但代谢组学和系统生物学驱动的研究表明,它们在生成假说和以非靶向或无目标的方式剖析信号网络方面具有巨大的潜力。最近,整合基因组学方法,即将相关分析应用于拟南芥的转录组和代谢组学数据,揭示了鉴定出的代谢物可能作为核基因表达的介导物。此外,代谢组学领域本身的技术不断发展,进一步证明了其作为揭示代谢物介导的信号过程的非常合适的检测手段的潜力。作为这些研究的基础,我们在这里概述并讨论了利用代谢组学和系统生物学驱动的方法阐明逆行信号分子和途径的最新进展。

相似文献

3
Metabolomics for functional genomics, systems biology, and biotechnology.
Annu Rev Plant Biol. 2010;61:463-89. doi: 10.1146/annurev.arplant.043008.092035.
4
Retrograde signaling: Organelles go networking.
Biochim Biophys Acta. 2016 Aug;1857(8):1313-1325. doi: 10.1016/j.bbabio.2016.03.017. Epub 2016 Mar 17.
5
Metabolome 2.0: quantitative genetics and network biology of metabolic phenotypes.
Mol Biosyst. 2012 Oct;8(10):2494-502. doi: 10.1039/c2mb25167a.
6
Integrated omics approaches in plant systems biology.
Curr Opin Chem Biol. 2009 Dec;13(5-6):532-8. doi: 10.1016/j.cbpa.2009.09.022.
7
Retrograde signals from endosymbiotic organelles: a common control principle in eukaryotic cells.
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190396. doi: 10.1098/rstb.2019.0396. Epub 2020 May 4.
8
Unveiling cellular biochemical reactions via metabolomics-driven approaches.
Curr Opin Microbiol. 2010 Jun;13(3):358-62. doi: 10.1016/j.mib.2010.04.006. Epub 2010 Apr 27.

引用本文的文献

1
Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond.
Plant Commun. 2023 Jan 9;4(1):100511. doi: 10.1016/j.xplc.2022.100511. Epub 2022 Dec 26.
3
Ascorbate and Thiamin: Metabolic Modulators in Plant Acclimation Responses.
Plants (Basel). 2020 Jan 13;9(1):101. doi: 10.3390/plants9010101.
4
Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology.
Int J Mol Sci. 2016 Apr 27;17(5):632. doi: 10.3390/ijms17050632.
5
Metabolic control of redox and redox control of metabolism in plants.
Antioxid Redox Signal. 2014 Sep 20;21(9):1389-421. doi: 10.1089/ars.2014.6018. Epub 2014 Jul 31.
7
The redox-sensitive chloroplast trehalose-6-phosphate phosphatase AtTPPD regulates salt stress tolerance.
Antioxid Redox Signal. 2014 Sep 20;21(9):1289-304. doi: 10.1089/ars.2013.5693. Epub 2014 Jun 26.
8
9
Molecular regulation of fruit ripening.
Front Plant Sci. 2013 Jun 14;4:198. doi: 10.3389/fpls.2013.00198. eCollection 2013.
10
Retrograde signals galore.
Front Plant Sci. 2013 Mar 12;4:45. doi: 10.3389/fpls.2013.00045. eCollection 2013.

本文引用的文献

1
Towards multiscale plant models: integrating cellular networks.
Trends Plant Sci. 2012 Dec;17(12):728-36. doi: 10.1016/j.tplants.2012.06.012. Epub 2012 Jul 18.
3
Retrograde signaling in plants: from simple to complex scenarios.
Front Plant Sci. 2012 Jun 19;3:135. doi: 10.3389/fpls.2012.00135. eCollection 2012.
4
Analysis of the compartmentalized metabolome - a validation of the non-aqueous fractionation technique.
Front Plant Sci. 2011 Sep 22;2:55. doi: 10.3389/fpls.2011.00055. eCollection 2011.
6
Additional role of O-acetylserine as a sulfur status-independent regulator during plant growth.
Plant J. 2012 May;70(4):666-77. doi: 10.1111/j.1365-313X.2012.04905.x. Epub 2012 Mar 8.
7
8
Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis.
Plant Cell. 2011 Nov;23(11):3992-4012. doi: 10.1105/tpc.111.091033. Epub 2011 Nov 29.
9
10
Toward the storage metabolome: profiling the barley vacuole.
Plant Physiol. 2011 Nov;157(3):1469-82. doi: 10.1104/pp.111.185710. Epub 2011 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验