Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
IEEE Rev Biomed Eng. 2012;5:74-87. doi: 10.1109/RBME.2012.2212427.
This paper reviews challenges and opportunities in multiscale data integration for biomedical informatics. Biomedical data can come from different biological origins, data acquisition technologies, and clinical applications. Integrating such data across multiple scales (e.g., molecular, cellular/tissue, and patient) can lead to more informed decisions for personalized, predictive, and preventive medicine. However, data heterogeneity, community standards in data acquisition, and computational complexity are big challenges for such decision making. This review describes genomic and proteomic (i.e., molecular), histopathological imaging (i.e., cellular/tissue), and clinical (i.e., patient) data; it includes case studies for single-scale (e.g., combining genomic or histopathological image data), multiscale (e.g., combining histopathological image and clinical data), and multiscale and multiplatform (e.g., the Human Protein Atlas and The Cancer Genome Atlas) data integration. Numerous opportunities exist in biomedical informatics research focusing on integration of multiscale and multiplatform data.
本文回顾了生物医学信息学中多尺度数据集成面临的挑战和机遇。生物医学数据可能来自不同的生物学来源、数据采集技术和临床应用。在多个尺度(例如,分子、细胞/组织和患者)上整合这些数据,可以为个性化、预测性和预防性医学提供更明智的决策。然而,数据异质性、数据采集的社区标准和计算复杂性是此类决策的重大挑战。本文描述了基因组和蛋白质组(即分子)、组织病理学成像(即细胞/组织)和临床(即患者)数据;它包括了单尺度(例如,整合基因组或组织病理学图像数据)、多尺度(例如,整合组织病理学图像和临床数据)以及多尺度和多平台(例如,人类蛋白质图谱和癌症基因组图谱)数据集成的案例研究。在关注多尺度和多平台数据集成的生物医学信息学研究中,存在着众多的机会。