Suppr超能文献

结构蛋白质组学中蛋白质内在无序知识的应用。

Utilization of protein intrinsic disorder knowledge in structural proteomics.

作者信息

Oldfield Christopher J, Xue Bin, Van Ya-Yue, Ulrich Eldon L, Markley John L, Dunker A Keith, Uversky Vladimir N

机构信息

Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.

出版信息

Biochim Biophys Acta. 2013 Feb;1834(2):487-98. doi: 10.1016/j.bbapap.2012.12.003. Epub 2012 Dec 8.

Abstract

Intrinsically disordered proteins (IDPs) and proteins with long disordered regions are highly abundant in various proteomes. Despite their lack of well-defined ordered structure, these proteins and regions are frequently involved in crucial biological processes. Although in recent years these proteins have attracted the attention of many researchers, IDPs represent a significant challenge for structural characterization since these proteins can impact many of the processes in the structure determination pipeline. Here we investigate the effects of IDPs on the structure determination process and the utility of disorder prediction in selecting and improving proteins for structural characterization. Examination of the extent of intrinsic disorder in existing crystal structures found that relatively few protein crystal structures contain extensive regions of intrinsic disorder. Although intrinsic disorder is not the only cause of crystallization failures and many structured proteins cannot be crystallized, filtering out highly disordered proteins from structure-determination target lists is still likely to be cost effective. Therefore it is desirable to avoid highly disordered proteins from structure-determination target lists and we show that disorder prediction can be applied effectively to enrich structure determination pipelines with proteins more likely to yield crystal structures. For structural investigation of specific proteins, disorder prediction can be used to improve targets for structure determination. Finally, a framework for considering intrinsic disorder in the structure determination pipeline is proposed.

摘要

内在无序蛋白质(IDP)和具有长无序区域的蛋白质在各种蛋白质组中高度丰富。尽管它们缺乏明确的有序结构,但这些蛋白质和区域经常参与关键的生物学过程。尽管近年来这些蛋白质吸引了许多研究人员的关注,但IDP对结构表征来说是一项重大挑战,因为这些蛋白质会影响结构测定流程中的许多过程。在此,我们研究了IDP对结构测定过程的影响以及无序预测在选择和改进用于结构表征的蛋白质方面的效用。对现有晶体结构中内在无序程度的检查发现,相对较少的蛋白质晶体结构包含广泛的内在无序区域。虽然内在无序不是结晶失败的唯一原因,而且许多结构化蛋白质也无法结晶,但从结构测定目标列表中筛选出高度无序的蛋白质仍可能具有成本效益。因此,希望从结构测定目标列表中避免高度无序的蛋白质,并且我们表明无序预测可以有效地应用于用更有可能产生晶体结构的蛋白质丰富结构测定流程。对于特定蛋白质的结构研究,无序预测可用于改进结构测定的目标。最后,提出了一个在结构测定流程中考虑内在无序的框架。

相似文献

1
Utilization of protein intrinsic disorder knowledge in structural proteomics.结构蛋白质组学中蛋白质内在无序知识的应用。
Biochim Biophys Acta. 2013 Feb;1834(2):487-98. doi: 10.1016/j.bbapap.2012.12.003. Epub 2012 Dec 8.
2
Prediction and analysis of intrinsically disordered proteins.内在无序蛋白质的预测与分析
Methods Mol Biol. 2015;1261:35-59. doi: 10.1007/978-1-4939-2230-7_3.
3
Prediction of protein disorder.蛋白质无序性预测
Methods Mol Biol. 2008;426:103-15. doi: 10.1007/978-1-60327-058-8_6.
4
Intrinsically disordered proteins (IDPs) in trypanosomatids.锥虫中的内在无序蛋白质(IDP)
BMC Genomics. 2014 Dec 13;15(1):1100. doi: 10.1186/1471-2164-15-1100.
8
Prediction of protein disorder at the domain level.在结构域水平上预测蛋白质无序状态。
Curr Protein Pept Sci. 2007 Apr;8(2):161-71. doi: 10.2174/138920307780363406.
9
Intrinsic disorder in the Protein Data Bank.蛋白质数据库中的内在无序状态。
J Biomol Struct Dyn. 2007 Feb;24(4):325-42. doi: 10.1080/07391102.2007.10507123.

引用本文的文献

9
SETH predicts nuances of residue disorder from protein embeddings.SETH从蛋白质嵌入中预测残基无序的细微差别。
Front Bioinform. 2022 Oct 10;2:1019597. doi: 10.3389/fbinf.2022.1019597. eCollection 2022.

本文引用的文献

9
Intrinsically disordered proteins are potential drug targets.无规则卷曲蛋白质是潜在的药物靶点。
Curr Opin Chem Biol. 2010 Aug;14(4):481-8. doi: 10.1016/j.cbpa.2010.06.169. Epub 2010 Jul 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验