Suppr超能文献

结构蛋白质组学中蛋白质内在无序知识的应用。

Utilization of protein intrinsic disorder knowledge in structural proteomics.

作者信息

Oldfield Christopher J, Xue Bin, Van Ya-Yue, Ulrich Eldon L, Markley John L, Dunker A Keith, Uversky Vladimir N

机构信息

Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.

出版信息

Biochim Biophys Acta. 2013 Feb;1834(2):487-98. doi: 10.1016/j.bbapap.2012.12.003. Epub 2012 Dec 8.

Abstract

Intrinsically disordered proteins (IDPs) and proteins with long disordered regions are highly abundant in various proteomes. Despite their lack of well-defined ordered structure, these proteins and regions are frequently involved in crucial biological processes. Although in recent years these proteins have attracted the attention of many researchers, IDPs represent a significant challenge for structural characterization since these proteins can impact many of the processes in the structure determination pipeline. Here we investigate the effects of IDPs on the structure determination process and the utility of disorder prediction in selecting and improving proteins for structural characterization. Examination of the extent of intrinsic disorder in existing crystal structures found that relatively few protein crystal structures contain extensive regions of intrinsic disorder. Although intrinsic disorder is not the only cause of crystallization failures and many structured proteins cannot be crystallized, filtering out highly disordered proteins from structure-determination target lists is still likely to be cost effective. Therefore it is desirable to avoid highly disordered proteins from structure-determination target lists and we show that disorder prediction can be applied effectively to enrich structure determination pipelines with proteins more likely to yield crystal structures. For structural investigation of specific proteins, disorder prediction can be used to improve targets for structure determination. Finally, a framework for considering intrinsic disorder in the structure determination pipeline is proposed.

摘要

内在无序蛋白质(IDP)和具有长无序区域的蛋白质在各种蛋白质组中高度丰富。尽管它们缺乏明确的有序结构,但这些蛋白质和区域经常参与关键的生物学过程。尽管近年来这些蛋白质吸引了许多研究人员的关注,但IDP对结构表征来说是一项重大挑战,因为这些蛋白质会影响结构测定流程中的许多过程。在此,我们研究了IDP对结构测定过程的影响以及无序预测在选择和改进用于结构表征的蛋白质方面的效用。对现有晶体结构中内在无序程度的检查发现,相对较少的蛋白质晶体结构包含广泛的内在无序区域。虽然内在无序不是结晶失败的唯一原因,而且许多结构化蛋白质也无法结晶,但从结构测定目标列表中筛选出高度无序的蛋白质仍可能具有成本效益。因此,希望从结构测定目标列表中避免高度无序的蛋白质,并且我们表明无序预测可以有效地应用于用更有可能产生晶体结构的蛋白质丰富结构测定流程。对于特定蛋白质的结构研究,无序预测可用于改进结构测定的目标。最后,提出了一个在结构测定流程中考虑内在无序的框架。

相似文献

1
Utilization of protein intrinsic disorder knowledge in structural proteomics.
Biochim Biophys Acta. 2013 Feb;1834(2):487-98. doi: 10.1016/j.bbapap.2012.12.003. Epub 2012 Dec 8.
2
Prediction and analysis of intrinsically disordered proteins.
Methods Mol Biol. 2015;1261:35-59. doi: 10.1007/978-1-4939-2230-7_3.
3
Prediction of protein disorder.
Methods Mol Biol. 2008;426:103-15. doi: 10.1007/978-1-60327-058-8_6.
4
Intrinsically disordered proteins (IDPs) in trypanosomatids.
BMC Genomics. 2014 Dec 13;15(1):1100. doi: 10.1186/1471-2164-15-1100.
5
Unfoldomics of human diseases: linking protein intrinsic disorder with diseases.
BMC Genomics. 2009 Jul 7;10 Suppl 1(Suppl 1):S7. doi: 10.1186/1471-2164-10-S1-S7.
6
Addressing the intrinsic disorder bottleneck in structural proteomics.
Proteins. 2005 May 15;59(3):444-53. doi: 10.1002/prot.20446.
7
High-throughput characterization of intrinsic disorder in proteins from the Protein Structure Initiative.
J Struct Biol. 2012 Oct;180(1):201-15. doi: 10.1016/j.jsb.2012.05.013. Epub 2012 May 29.
8
Prediction of protein disorder at the domain level.
Curr Protein Pept Sci. 2007 Apr;8(2):161-71. doi: 10.2174/138920307780363406.
9
Intrinsic disorder in the Protein Data Bank.
J Biomol Struct Dyn. 2007 Feb;24(4):325-42. doi: 10.1080/07391102.2007.10507123.
10
Emerging Role of Mass Spectrometry-Based Structural Proteomics in Elucidating Intrinsic Disorder in Proteins.
Proteomics. 2021 Feb;21(3-4):e2000011. doi: 10.1002/pmic.202000011. Epub 2020 Aug 19.

引用本文的文献

4
Characterization of Intrinsically Disordered Proteins in Healthy and Diseased States by Nuclear Magnetic Resonance.
Rev Recent Clin Trials. 2024;19(3):176-188. doi: 10.2174/0115748871271420240213064251.
5
Comparative evaluation of AlphaFold2 and disorder predictors for prediction of intrinsic disorder, disorder content and fully disordered proteins.
Comput Struct Biotechnol J. 2023 Jun 2;21:3248-3258. doi: 10.1016/j.csbj.2023.06.001. eCollection 2023.
7
Rapid prediction and analysis of protein intrinsic disorder.
Protein Sci. 2022 Dec;31(12):e4496. doi: 10.1002/pro.4496.
8
Bioinformatics-based Characterization of the Sequence Variability of Zika Virus Polyprotein and Envelope Protein (E).
Evol Bioinform Online. 2022 Oct 27;18:11769343221130730. doi: 10.1177/11769343221130730. eCollection 2022.
9
SETH predicts nuances of residue disorder from protein embeddings.
Front Bioinform. 2022 Oct 10;2:1019597. doi: 10.3389/fbinf.2022.1019597. eCollection 2022.

本文引用的文献

2
SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly.
Nature. 2012 Jul 5;487(7405):119-22. doi: 10.1038/nature11155.
4
Multiparametric analysis of intrinsically disordered proteins: looking at intrinsic disorder through compound eyes.
Anal Chem. 2012 Mar 6;84(5):2096-104. doi: 10.1021/ac203096k. Epub 2012 Jan 19.
5
Structure of yeast kinetochore Ndc10 DNA-binding domain reveals unexpected evolutionary relationship to tyrosine recombinases.
J Biol Chem. 2012 Feb 10;287(7):5173-9. doi: 10.1074/jbc.C111.318501. Epub 2012 Jan 3.
6
The structure of neurexin 1α reveals features promoting a role as synaptic organizer.
Structure. 2011 Jun 8;19(6):779-89. doi: 10.1016/j.str.2011.03.012. Epub 2011 May 27.
7
The structure of TTHA0988 from Thermus thermophilus, a KipI-KipA homologue incorrectly annotated as an allophanate hydrolase.
Acta Crystallogr D Biol Crystallogr. 2011 Feb;67(Pt 2):105-11. doi: 10.1107/S0907444910051127. Epub 2011 Jan 8.
9
Intrinsically disordered proteins are potential drug targets.
Curr Opin Chem Biol. 2010 Aug;14(4):481-8. doi: 10.1016/j.cbpa.2010.06.169. Epub 2010 Jul 2.
10
The structure of adeno-associated virus serotype 3B (AAV-3B): insights into receptor binding and immune evasion.
Virology. 2010 Jul 20;403(1):26-36. doi: 10.1016/j.virol.2010.03.027. Epub 2010 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验