Suppr超能文献

快速预测和分析蛋白质固有无序性。

Rapid prediction and analysis of protein intrinsic disorder.

机构信息

Department of Chemistry, University of South Florida, Tampa, Florida, USA.

Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida, USA.

出版信息

Protein Sci. 2022 Dec;31(12):e4496. doi: 10.1002/pro.4496.

Abstract

Protein intrinsic disorder is found in all kingdoms of life and is known to underpin numerous physiological and pathological processes. Computational methods play an important role in characterizing and identifying intrinsically disordered proteins and protein regions. Herein, we present a new high-efficiency web-based disorder predictor named Rapid Intrinsic Disorder Analysis Online (RIDAO) that is designed to facilitate the application of protein intrinsic disorder analysis in genome-scale structural bioinformatics and comparative genomics/proteomics. RIDAO integrates six established disorder predictors into a single, unified platform that reproduces the results of individual predictors with near-perfect fidelity. To demonstrate the potential applications, we construct a test set containing more than one million sequences from one hundred organisms comprising over 420 million residues. Using this test set, we compare the efficiency and accessibility (i.e., ease of use) of RIDAO to five well-known and popular disorder predictors, namely: AUCpreD, IUPred3, metapredict V2, flDPnn, and SPOT-Disorder2. We show that RIDAO yields per-residue predictions at a rate two to six orders of magnitude greater than the other predictors and completely processes the test set in under an hour. RIDAO can be accessed free of charge at https://ridao.app.

摘要

蛋白质结构的无序性存在于所有生命领域中,它被认为是许多生理和病理过程的基础。计算方法在描述和识别无序蛋白质和蛋白质区域方面发挥着重要作用。在此,我们介绍了一种新的高效基于网络的无序预测器,称为 Rapid Intrinsic Disorder Analysis Online (RIDAO),旨在促进蛋白质结构无序分析在基因组规模结构生物信息学和比较基因组学/蛋白质组学中的应用。RIDAO 将六个已建立的无序预测器集成到一个单一的统一平台中,该平台可以近乎完美地再现各个预测器的结果。为了展示潜在的应用,我们构建了一个包含一百种生物的超过 4.2 亿个残基的超过 100 万个序列的测试集。使用这个测试集,我们比较了 RIDAO 的效率和可访问性(即易用性)与五个知名且流行的无序预测器,即:AUCpreD、IUPred3、metapredict V2、flDPnn 和 SPOT-Disorder2。我们表明,RIDAO 的逐残基预测速度比其他预测器快两到六个数量级,并且完全可以在一小时内处理测试集。RIDAO 可以免费在 https://ridao.app 上访问。

相似文献

4
Computational Prediction of Intrinsic Disorder in Proteins.蛋白质内在无序性的计算预测
Curr Protoc Protein Sci. 2017 Apr 3;88:2.16.1-2.16.14. doi: 10.1002/cpps.28.
9
Resources for computational prediction of intrinsic disorder in proteins.蛋白质内无序预测的计算资源。
Methods. 2022 Aug;204:132-141. doi: 10.1016/j.ymeth.2022.03.018. Epub 2022 Mar 31.

引用本文的文献

本文引用的文献

1
Deep learning in prediction of intrinsic disorder in proteins.深度学习在蛋白质内在无序预测中的应用
Comput Struct Biotechnol J. 2022 Mar 8;20:1286-1294. doi: 10.1016/j.csbj.2022.03.003. eCollection 2022.
7
Critical assessment of protein intrinsic disorder prediction.蛋白质固有无序预测的关键评估。
Nat Methods. 2021 May;18(5):472-481. doi: 10.1038/s41592-021-01117-3. Epub 2021 Apr 19.
9
Intrinsic disorder in protein sense-antisense recognition.蛋白质顺反子识别中的固有无序
J Mol Recognit. 2020 Oct;33(10):e2868. doi: 10.1002/jmr.2868. Epub 2020 Jun 22.
10
Intrinsic Disorder in Tetratricopeptide Repeat Proteins.四肽重复蛋白中的固有无序
Int J Mol Sci. 2020 May 25;21(10):3709. doi: 10.3390/ijms21103709.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验