Suppr超能文献

海马 CA1 锥体神经元胞体周围区域中钠电流的缓慢失活成分。

Slowly inactivating component of Na+ current in peri-somatic region of hippocampal CA1 pyramidal neurons.

机构信息

Center for Learning and Memory, Univ. of Texas at Austin, Austin, TX 78712-0805, USA.

出版信息

J Neurophysiol. 2013 Mar;109(5):1378-90. doi: 10.1152/jn.00435.2012. Epub 2012 Dec 12.

Abstract

The properties of voltage-gated ion channels on the neuronal membrane shape electrical activity such as generation and backpropagation of action potentials, initiation of dendritic spikes, and integration of synaptic inputs. Subthreshold currents mediated by sodium channels are of interest because of their activation near rest, slow inactivation kinetics, and consequent effects on excitability. Modulation of these currents can also perturb physiological responses of a neuron that might underlie pathological states such as epilepsy. Using nucleated patches from the peri-somatic region of hippocampal CA1 neurons, we recorded a slowly inactivating component of the macroscopic Na(+) current (which we have called INaS) that shared many biophysical properties with the persistent Na(+) current, INaP, but showed distinctively faster inactivating kinetics. Ramp voltage commands with a velocity of 400 mV/s were found to elicit this component of Na(+) current reliably. INaS also showed a more hyperpolarized I-V relationship and slower inactivation than those of the fast transient Na(+) current (INaT) recorded in the same patches. The peak amplitude of INaS was proportional to the peak amplitude of INaT but was much smaller in amplitude. Hexanol, riluzole, and ranolazine, known Na(+) channel blockers, were tested to compare their effects on both INaS and INaT. The peak conductance of INaS was preferentially blocked by hexanol and riluzole, but the shift of half-inactivation voltage (V1/2) was only observed in the presence of riluzole. Current-clamp measurements with hexanol suggested that INaS was involved in generation of an action potential and in upregulation of neuronal excitability.

摘要

神经元膜上电压门控离子通道的特性决定了电活动,如动作电位的产生和反向传播、树突棘的起始和突触输入的整合。钠通道介导的阈下电流之所以受到关注,是因为它们在静息状态附近被激活,具有缓慢的失活动力学特性,因此对兴奋性有影响。这些电流的调制也可能扰乱神经元的生理反应,而这些反应可能是癫痫等病理状态的基础。我们使用海马 CA1 神经元胞体周围区域的有核斑片记录到了一种宏观钠电流的缓慢失活成分(我们称之为 INaS),它与持续钠电流(INaP)具有许多相同的生物物理特性,但具有明显更快的失活动力学特性。我们发现,以 400 mV/s 的速度进行斜坡电压指令可以可靠地引出这种钠电流成分。INaS 还表现出比同一斑片中记录到的快速瞬时钠电流(INaT)更超极化的 I-V 关系和更缓慢的失活。INaS 的峰值幅度与 INaT 的峰值幅度成正比,但幅度要小得多。我们测试了已有的钠通道阻断剂己醇、利鲁唑和雷诺嗪,以比较它们对 INaS 和 INaT 的作用。INaS 的峰值电导优先被己醇和利鲁唑阻断,但只有在利鲁唑存在的情况下,半失活电压(V1/2)的移动才会被观察到。用己醇进行电流钳测量表明,INaS 参与了动作电位的产生和神经元兴奋性的上调。

相似文献

1
Slowly inactivating component of Na+ current in peri-somatic region of hippocampal CA1 pyramidal neurons.
J Neurophysiol. 2013 Mar;109(5):1378-90. doi: 10.1152/jn.00435.2012. Epub 2012 Dec 12.
2
Activation of Ih and TTX-sensitive sodium current at subthreshold voltages during CA1 pyramidal neuron firing.
J Neurophysiol. 2015 Oct;114(4):2376-89. doi: 10.1152/jn.00489.2015. Epub 2015 Aug 19.
3
Ranolazine vs phenytoin: greater effect of ranolazine on the transient Na(+) current than on the persistent Na(+) current in central neurons.
Neuropharmacology. 2016 Nov;110(Pt A):223-236. doi: 10.1016/j.neuropharm.2016.06.029. Epub 2016 Jul 19.
4
Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons.
Brain Res. 2013 Jul 3;1520:23-35. doi: 10.1016/j.brainres.2013.04.053. Epub 2013 May 4.
6
Persistent sodium current in layer 5 neocortical neurons is primarily generated in the proximal axon.
J Neurosci. 2006 Mar 29;26(13):3465-73. doi: 10.1523/JNEUROSCI.4907-05.2006.
8
Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons.
Eur J Pharmacol. 2019 Jul 15;855:175-182. doi: 10.1016/j.ejphar.2019.05.007. Epub 2019 May 4.
10
Persistent sodium currents in mesencephalic v neurons participate in burst generation and control of membrane excitability.
J Neurophysiol. 2005 May;93(5):2710-22. doi: 10.1152/jn.00636.2004. Epub 2004 Dec 29.

引用本文的文献

1
Differential roles of Na1.2 and Na1.6 in neocortical pyramidal cell excitability.
Elife. 2025 Jul 15;14:RP105696. doi: 10.7554/eLife.105696.
2
Persistent sodium currents in neurons: potential mechanisms and pharmacological blockers.
Pflugers Arch. 2024 Oct;476(10):1445-1473. doi: 10.1007/s00424-024-02980-7. Epub 2024 Jul 5.
3
Neuroprotective effect of ranolazine improves behavioral discrepancies in a rat model of scopolamine-induced dementia.
Front Neurosci. 2024 Jan 12;17:1267675. doi: 10.3389/fnins.2023.1267675. eCollection 2023.
4
Pharmacological determination of the fractional block of Nav channels required to impair neuronal excitability and seizures.
Front Cell Neurosci. 2022 Sep 29;16:964691. doi: 10.3389/fncel.2022.964691. eCollection 2022.
5
Facilitation of Insulin Effects by Ranolazine in Astrocytes in Primary Culture.
Int J Mol Sci. 2022 Oct 9;23(19):11969. doi: 10.3390/ijms231911969.
7
Pharmacological intervention in young adolescents rescues synaptic physiology and behavioural deficits in Syngap1 mice.
Exp Brain Res. 2022 Jan;240(1):289-309. doi: 10.1007/s00221-021-06254-x. Epub 2021 Nov 5.
8
Frequency-Dependent Action of Neuromodulation.
eNeuro. 2021 Nov 9;8(6). doi: 10.1523/ENEURO.0338-21.2021. Print 2021 Nov-Dec.
9
Ionic current correlations are ubiquitous across phyla.
Sci Rep. 2019 Feb 8;9(1):1687. doi: 10.1038/s41598-018-38405-6.
10
Kinetic properties of persistent Na current orchestrate oscillatory bursting in respiratory neurons.
J Gen Physiol. 2018 Nov 5;150(11):1523-1540. doi: 10.1085/jgp.201812100. Epub 2018 Oct 9.

本文引用的文献

1
Transient sodium current at subthreshold voltages: activation by EPSP waveforms.
Neuron. 2012 Sep 20;75(6):1081-93. doi: 10.1016/j.neuron.2012.08.033.
2
Crystal structure of a voltage-gated sodium channel in two potentially inactivated states.
Nature. 2012 May 20;486(7401):135-9. doi: 10.1038/nature11077.
3
Mechanisms of closed-state inactivation in voltage-gated ion channels.
J Physiol. 2011 Feb 1;589(Pt 3):461-79. doi: 10.1113/jphysiol.2010.191965. Epub 2010 Nov 22.
4
Flufenamic acid decreases neuronal excitability through modulation of voltage-gated sodium channel gating.
J Physiol. 2010 Oct 15;588(Pt 20):3869-82. doi: 10.1113/jphysiol.2010.193037. Epub 2010 Aug 19.
5
Use-dependent block of cardiac late Na(+) current by ranolazine.
Heart Rhythm. 2009 Nov;6(11):1625-31. doi: 10.1016/j.hrthm.2009.07.042. Epub 2009 Jul 28.
6
Direct measurement of somatic voltage clamp errors in central neurons.
Nat Neurosci. 2008 Jul;11(7):790-8. doi: 10.1038/nn.2137. Epub 2008 Jun 15.
7
n-Alcohols inhibit voltage-gated Na+ channels expressed in Xenopus oocytes.
J Pharmacol Exp Ther. 2008 Jul;326(1):270-7. doi: 10.1124/jpet.108.138370. Epub 2008 Apr 23.
8
Biophysical properties of human Na v1.7 splice variants and their regulation by protein kinase A.
J Neurophysiol. 2008 May;99(5):2241-50. doi: 10.1152/jn.01350.2007. Epub 2008 Mar 12.
9
The roles of sodium channels in nociception: Implications for mechanisms of pain.
Pain. 2007 Oct;131(3):243-257. doi: 10.1016/j.pain.2007.07.026. Epub 2007 Sep 4.
10
The action potential in mammalian central neurons.
Nat Rev Neurosci. 2007 Jun;8(6):451-65. doi: 10.1038/nrn2148.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验