Suppr超能文献

自组装单分子层的烷硫醇抑制析氢反应并提高可充电铁电池电极的效率。

Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes.

机构信息

Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.

出版信息

J Am Chem Soc. 2013 Jan 9;135(1):347-53. doi: 10.1021/ja3095119. Epub 2012 Dec 24.

Abstract

Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.

摘要

铁基可充电电池因其低成本、环保和耐用性,对于大规模储能极具吸引力。在这些电池的应用中,一个主要的挑战是它们相对较低的电效率。这种低效率是由于在充电和空闲状态下,铁电极上发生的寄生析氢反应所致。在本研究中,我们首次证明线性烷硫醇在抑制碱性铁电池电极析氢方面非常有效。烷硫醇在铁电极上形成自组装单层。烷硫醇对析氢的抑制程度大于 90%,且烷硫醇的有效性随链长增加而增加。通过对高纯铁盘电极进行稳态恒电位极化研究和阻抗测量,我们表明烷硫醇的自组装通过减少电化学反应的可用界面面积来抑制寄生反应。我们使用一个简单的模型来模拟烷硫醇的链长对界面的覆盖率、电荷转移电阻和双电层电容的影响,该模型还可以得出链间相互作用能的值。我们已经验证了在实际可充电铁电池电极中使用烷硫醇可以提高充电效率。电池测试的结果表明,烷硫醇可实现可充电铁电极报告的最高法拉第效率之一,从而为基于低成本铁基可充电电池的大规模储能解决方案提供了前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验