Suppr超能文献

通过对接研究合成聚合物和生物聚合物之间相互作用的新方法。

A novel view of modelling interactions between synthetic and biological polymers via docking.

机构信息

Orekhovich Institute of Biomedical Chemistry, RAMS, Pogodinskaya St. 10/8, 119121 Moscow, Russia.

出版信息

J Comput Aided Mol Des. 2012 Dec;26(12):1369-88. doi: 10.1007/s10822-012-9621-7. Epub 2012 Dec 13.

Abstract

Multipoint interactions between synthetic and natural polymers provide a promising platform for many topical applications, including therapeutic blockage of virus-specific targets. Docking may become a useful tool for modelling of such interactions. However, the rigid docking cannot be correctly applied to synthetic polymers with flexible chains. The application of flexible docking to these polymers as whole macromolecule ligands is also limited by too many possible conformations. We propose to solve this problem via stepwise flexible docking. Step 1 is docking of separate polymer components: (1) backbone units (BU), multi-repeated along the chain, and (2) side groups (SG) consisting of functionally active elements (SG(F)) and bridges (SG(B)) linking SG(F) with BU. At this step, probable binding sites locations and binding energies for the components are scored. Step 2 is docking of component-integrating models: BU, SG = SG(F)-SG(B), BU-SG, BU-BU(SG)-BU, BU(SG)-BU-BU(SG), and BU(var)(SG(var)). Every modelling level yields new information, including how the linkage of various components influences on the ligand-target contacts positioning, orientation, and binding energy in step-by-step approximation to polymeric ligand motifs. Step 3 extrapolates the docking results to real-scale macromolecules. This approach has been demonstrated by studying the interactions between hetero-SG modified anionic polymers and the N-heptad repeat region tri-helix core of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp41, the key mediator of HIV-1 fusion during virus entry. The docking results are compared to real polymeric compounds, acting as HIV-1 entry inhibitors in vitro. This study clarifies the optimal macromolecular design for the viral fusion inhibition and drug resistance prevention.

摘要

多点相互作用在合成和天然聚合物之间提供了一个有前途的平台,可用于许多局部应用,包括针对病毒特异性靶标的治疗性阻断。对接可能成为此类相互作用建模的有用工具。然而,刚性对接不能正确应用于具有柔性链的合成聚合物。将柔性对接应用于这些聚合物作为整体大分子配体也受到太多可能构象的限制。我们建议通过逐步柔性对接来解决这个问题。第一步是对接单独的聚合物成分:(1) 沿链多次重复的骨架单元 (BU),和 (2) 由功能活性元素 (SG(F)) 和连接 BU 的桥接单元 (SG(B)) 组成的侧基 (SG)。在这一步中,对成分的可能结合位点位置和结合能进行评分。第二步是对接组件整合模型:BU、SG = SG(F)-SG(B)、BU-SG、BU-SG-FU-BU、BU-SG-BU-BU-SG、和 BU(var)(SG(var))。每个建模水平都提供了新的信息,包括各种成分的连接如何影响配体-靶标接触的定位、方向和结合能,以逐步逼近聚合物配体基序。第三步将对接结果外推到真实尺度的大分子。这种方法已通过研究异侧基修饰的阴离子聚合物与人类免疫缺陷病毒 1 (HIV-1) 包膜糖蛋白 gp41 的 N-七肽重复区三螺旋核心之间的相互作用得到证明,gp41 是 HIV-1 融合进入病毒时的关键介导物。将对接结果与作为 HIV-1 进入抑制剂在体外起作用的真实聚合物化合物进行比较。这项研究阐明了病毒融合抑制和耐药性预防的最佳大分子设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验