Suppr超能文献

CS-AMPPred:一种用于半胱氨酸稳定肽抗菌活性预测的更新的 SVM 模型。

CS-AMPPred: an updated SVM model for antimicrobial activity prediction in cysteine-stabilized peptides.

机构信息

Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília-DF, Brazil.

出版信息

PLoS One. 2012;7(12):e51444. doi: 10.1371/journal.pone.0051444. Epub 2012 Dec 11.

Abstract

The antimicrobial peptides (AMP) have been proposed as an alternative to control resistant pathogens. However, due to multifunctional properties of several AMP classes, until now there has been no way to perform efficient AMP identification, except through in vitro and in vivo tests. Nevertheless, an indication of activity can be provided by prediction methods. In order to contribute to the AMP prediction field, the CS-AMPPred (Cysteine-Stabilized Antimicrobial Peptides Predictor) is presented here, consisting of an updated version of the Support Vector Machine (SVM) model for antimicrobial activity prediction in cysteine-stabilized peptides. The CS-AMPPred is based on five sequence descriptors: indexes of (i) α-helix and (ii) loop formation; and averages of (iii) net charge, (iv) hydrophobicity and (v) flexibility. CS-AMPPred was based on 310 cysteine-stabilized AMPs and 310 sequences extracted from PDB. The polynomial kernel achieves the best accuracy on 5-fold cross validation (85.81%), while the radial and linear kernels achieve 84.19%. Testing in a blind data set, the polynomial and radial kernels achieve an accuracy of 90.00%, while the linear model achieves 89.33%. The three models reach higher accuracies than previously described methods. A standalone version of CS-AMPPred is available for download at http://sourceforge.net/projects/csamppred/ and runs on any Linux machine.

摘要

抗菌肽 (AMP) 被提议作为控制耐药病原体的替代方法。然而,由于几种 AMP 类别的多功能特性,到目前为止,除了体外和体内测试之外,还没有办法进行有效的 AMP 鉴定。尽管如此,预测方法可以提供活性的指示。为了为 AMP 预测领域做出贡献,这里提出了 CS-AMPPred(半胱氨酸稳定的抗菌肽预测器),它由用于预测半胱氨酸稳定肽的抗菌活性的支持向量机 (SVM) 模型的更新版本组成。CS-AMPPred 基于五个序列描述符:(i)α-螺旋和(ii)环形成的指数;以及(iii)净电荷、(iv)疏水性和(v)柔韧性的平均值。CS-AMPPred 基于 310 种半胱氨酸稳定的 AMP 和从 PDB 中提取的 310 个序列。多项式核在 5 折交叉验证中达到最佳精度(85.81%),而径向核和线性核达到 84.19%。在盲数据集测试中,多项式核和径向核的准确率达到 90.00%,而线性模型的准确率达到 89.33%。这三个模型的准确率均高于之前描述的方法。CS-AMPPred 的独立版本可在 http://sourceforge.net/projects/csamppred/ 下载,并可在任何 Linux 机器上运行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db2b/3519874/60e31fc2f55b/pone.0051444.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验