Suppr超能文献

基于 OWL 的推理方法用于验证原型。

OWL-based reasoning methods for validating archetypes.

机构信息

Departamento de Informática y Sistemas, Facultad de Informática, Universidad de Murcia, CP 30100 Murcia, Spain.

出版信息

J Biomed Inform. 2013 Apr;46(2):304-17. doi: 10.1016/j.jbi.2012.11.009. Epub 2012 Dec 14.

Abstract

Some modern Electronic Healthcare Record (EHR) architectures and standards are based on the dual model-based architecture, which defines two conceptual levels: reference model and archetype model. Such architectures represent EHR domain knowledge by means of archetypes, which are considered by many researchers to play a fundamental role for the achievement of semantic interoperability in healthcare. Consequently, formal methods for validating archetypes are necessary. In recent years, there has been an increasing interest in exploring how semantic web technologies in general, and ontologies in particular, can facilitate the representation and management of archetypes, including binding to terminologies, but no solution based on such technologies has been provided to date to validate archetypes. Our approach represents archetypes by means of OWL ontologies. This permits to combine the two levels of the dual model-based architecture in one modeling framework which can also integrate terminologies available in OWL format. The validation method consists of reasoning on those ontologies to find modeling errors in archetypes: incorrect restrictions over the reference model, non-conformant archetype specializations and inconsistent terminological bindings. The archetypes available in the repositories supported by the openEHR Foundation and the NHS Connecting for Health Program, which are the two largest publicly available ones, have been analyzed with our validation method. For such purpose, we have implemented a software tool called Archeck. Our results show that around 1/5 of archetype specializations contain modeling errors, the most common mistakes being related to coded terms and terminological bindings. The analysis of each repository reveals that different patterns of errors are found in both repositories. This result reinforces the need for making serious efforts in improving archetype design processes.

摘要

一些现代的电子医疗记录(EHR)架构和标准基于双模型架构,该架构定义了两个概念层:参考模型和原型模型。这种架构通过原型来表示 EHR 领域知识,许多研究人员认为原型对于实现医疗保健中的语义互操作性起着至关重要的作用。因此,需要使用形式化方法来验证原型。近年来,人们越来越关注探索语义 Web 技术(特别是本体)如何能够促进原型的表示和管理,包括与术语的绑定,但迄今为止,尚未提供基于这些技术的解决方案来验证原型。我们的方法通过 OWL 本体来表示原型。这使得能够在一个建模框架中结合双模型架构的两个层次,该框架还可以集成以 OWL 格式提供的术语。验证方法包括对这些本体进行推理,以在原型中查找建模错误:对参考模型的不正确限制、不符合规范的原型专门化和不一致的术语绑定。使用我们的验证方法分析了开放电子健康记录基金会和 NHS 连接健康计划支持的存储库中可用的原型,这两个存储库是两个最大的公开可用存储库。为此,我们实现了一个名为 Archeck 的软件工具。我们的结果表明,大约有 1/5 的原型专门化包含建模错误,最常见的错误与编码术语和术语绑定有关。对每个存储库的分析表明,两个存储库中都发现了不同模式的错误。这一结果强化了在改进原型设计流程方面做出认真努力的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验