Suppr超能文献

基于本体的临床模型、术语和指南的整合:对共济失调评估和评定量表(SARA)的探索性研究。

An ontology-aware integration of clinical models, terminologies and guidelines: an exploratory study of the Scale for the Assessment and Rating of Ataxia (SARA).

机构信息

Department of Electronics & Computer Science, Campus Vida, University of Santiago de Compostela, Santiago de Compostela, Spain.

Department of Neurology, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain.

出版信息

BMC Med Inform Decis Mak. 2017 Dec 6;17(1):159. doi: 10.1186/s12911-017-0568-4.

Abstract

BACKGROUND

Electronic rating scales represent an important resource for standardized data collection. However, the ability to exploit reasoning on rating scale data is still limited. The objective of this work is to facilitate the integration of the semantics required to automatically interpret collections of standardized clinical data. We developed an electronic prototype for the Scale of the Assessment and Rating of Ataxia (SARA), broadly used in neurology. In order to address the modeling challenges of the SARA, we propose to combine the best performances from OpenEHR clinical archetypes, guidelines and ontologies.

METHODS

A scaled-down version of the Human Phenotype Ontology (HPO) was built, extracting the terms that describe the SARA tests from free-text sources. This version of the HPO was then used as backbone to normalize the content of the SARA through clinical archetypes. The knowledge required to exploit reasoning on the SARA data was modeled as separate information-processing units interconnected via the defined archetypes. Each unit used the most appropriate technology to formally represent the required knowledge.

RESULTS

Based on this approach, we implemented a prototype named SARA Management System, to be used for both the assessment of cerebellar syndrome and the production of a clinical synopsis. For validation purposes, we used recorded SARA data from 28 anonymous subjects affected by Spinocerebellar Ataxia Type 36 (SCA36). When comparing the performance of our prototype with that of two independent experts, weighted kappa scores ranged from 0.62 to 0.86.

CONCLUSIONS

The combination of archetypes, phenotype ontologies and electronic information-processing rules can be used to automate the extraction of relevant clinical knowledge from plain scores of rating scales. Our results reveal a substantial degree of agreement between the results achieved by an ontology-aware system and the human experts.

摘要

背景

电子评分量表是标准化数据收集的重要资源。然而,利用评分量表数据进行推理的能力仍然有限。本工作的目的是促进自动解释标准化临床数据集合所需语义的集成。我们开发了一个广泛用于神经病学的共济失调评估和评定量表(SARA)的电子原型。为了解决 SARA 的建模挑战,我们建议将 OpenEHR 临床原型、指南和本体的最佳性能结合起来。

方法

构建了人类表型本体(HPO)的缩减版本,从自由文本来源中提取描述 SARA 测试的术语。然后,将该版本的 HPO 用作通过临床原型对 SARA 内容进行规范化的主干。利用 SARA 数据进行推理所需的知识被建模为通过定义的原型相互连接的独立信息处理单元。每个单元都使用最合适的技术来正式表示所需的知识。

结果

基于这种方法,我们实现了一个名为 SARA 管理系统的原型,用于评估小脑综合征和生成临床概要。为了验证目的,我们使用了来自 28 名匿名受影响的 SCA36 患者的记录 SARA 数据。当将我们的原型与两名独立专家的表现进行比较时,加权 Kappa 分数范围为 0.62 至 0.86。

结论

原型、表型本体和电子信息处理规则的组合可用于从评分量表的纯分数中自动提取相关临床知识。我们的结果揭示了本体感知系统和人类专家之间的结果具有很大的一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfed/5718136/18436d8d6ca4/12911_2017_568_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验