Department of Chemical Engineering, Laval University, Quebec G1K 7P4, Canada.
Colloids Surf B Biointerfaces. 2013 Mar 1;103:326-44. doi: 10.1016/j.colsurfb.2012.10.049. Epub 2012 Nov 12.
Inorganic hybrid nanostructures containing two or more nanocomponents have been emerging in many areas of materials science in recent years. The particle-particle interactions in a hybrid particle system could significantly improve existing local electronic structure and induce tunable physiochemical responses. The current work reviews the diverse inorganic hybrid nanostructures formed by adhesion of the different single components via seed-mediated method. The hybrid nanomaterials have great potentials for real applications in many other fields. The nanohybrids have been used as efficient heterocatalysts for carbon monoxide conversion and photodegradation of organic contaminants. The enhanced catalytic activity of these hybrid nanocatalysts could be attributed the formation of oxygen vacancies and electron transfer across the structural junction in a hybrid system as a result of the interfacial particle-particle interactions. The synergistic combination of up-converting and semiconducting properties in an up-converting semiconducting hybrid particle results in appearance of sub-band-gap photoconductivity. This behavior has a great significance for the design of photovoltaic devices for effective solar energy conversion. The functionalization and subsequent bioconjugation of the hybrid nanostructures to afford the multifunctional nanomedical platforms for simultaneous diagnosis and therapy are reviewed. The conjugated multifunctional hybrid nanostructures exhibit high biocompatibility and highly selective binding with functional groups-fabricated alive organs through delivering them to the tumor sites. The clever combinations of multifunctional features and antibody conjugation within these vehicles make them to generally offer new opportunities for clinical diagnostics and therapeutics.
近年来,含有两种或两种以上纳米组分的无机杂化纳米结构在材料科学的许多领域中不断涌现。杂化粒子系统中的粒子-粒子相互作用可以显著改善现有局部电子结构,并诱导可调的物理化学响应。目前的工作综述了通过种子介导法将不同的单一组分粘附形成的各种无机杂化纳米结构。这些杂化纳米材料在许多其他领域的实际应用中有很大的潜力。纳米杂化物已被用作一氧化碳转化和有机污染物光降解的高效多相催化剂。这些杂化纳米催化剂的催化活性增强可归因于混合体系中由于界面粒子-粒子相互作用而形成的氧空位和电子转移。上转换和半导体性质在一个上转换半导体杂化粒子中的协同组合导致了亚带隙光导现象的出现。这种行为对于设计有效的太阳能转换光伏器件具有重要意义。对杂化纳米结构进行功能化和随后的生物共轭,以提供多功能的纳米医学平台,用于同时诊断和治疗,这也得到了综述。共轭多功能杂化纳米结构表现出高生物相容性和与功能基团的高选择性结合,通过将它们递送到肿瘤部位,从而与活器官结合。这些载体中的多功能特性和抗体共轭的巧妙组合为临床诊断和治疗提供了新的机会。