Interdisciplinary Center for Nanotoxicity, Department of Chemistry and Biochemistry, Jackson State University, 1400 J. R. Lynch Street, Jackson, MS 39217, USA.
J Mol Model. 2013 Jul;19(7):2855-64. doi: 10.1007/s00894-012-1729-0. Epub 2012 Dec 18.
Meta-hybrid density functional theory calculations using M06-2X/6-31+G(d,p) and M06-2X/6-311+G(d,p) levels of theory have been performed to understand the strength of C-H(…)π interactions of two possible types for benzene-acetylene, 1,3,5-trifluorobenzene-acetylene and coronene-acetylene complexes. Our study reveals that the C-H(...)π interaction complex where acetylene located above to the center of benzene ring (classical T-shaped) is the lowest energy structure. This structure is twice more stable than the configuration characterized by H atom of benzene interacting with the π-cloud of acetylene. The binding energy of 2.91 kcal/mol calculated at the M06-2X/6-311+G(d,p) level for the lowest energy configuration (1A) is in very good agreement with the experimental binding energy of 2.7 ± 0.2 kcal/mol for benzene-acetylene complex. Interestingly, the C-H(...)π interaction of acetylene above to the center of the aromatic ring is not the lowest energy configuration for 1,3,5-trifluorobenzene-acetylene and coronene-acetylene complexes. The lowest energy configuration (2A) for the former complex possesses both C-H(...)π interaction and C-H(...)F hydrogen bond, while the lowest energy structure for the coronene-acetylene complex involves both π-π and C-H(...)π interactions. C-H stretching vibrational frequencies and the frequency shifts are reported and analyzed for all of the configurations. We observed red-shift of the vibrational frequency for the stretching mode of the C-H bond that interacts with the π-cloud. Acetylene in the lowest-energy structures of the complexes exhibits significant red-shift of the C-H stretching frequency and change in intensity of the corresponding vibrational frequency, compared to bare acetylene. We have examined the molecular electrostatic potential on the surfaces of benzene, 1,3,5-trifluorobenzene, coronene and acetylene to explain the binding strengths of various complexes studied here.
采用 M06-2X/6-31+G(d,p) 和 M06-2X/6-311+G(d,p) 理论水平进行了混合密度泛函理论计算,以了解苯乙炔、1,3,5-三氟苯乙炔和冠状苯乙炔复合物两种可能类型的 C-H(…)π相互作用的强度。我们的研究表明,乙炔位于苯环中心上方的 C-H(…)π相互作用复合物(经典 T 形)是最低能量结构。这种结构比苯的 H 原子与乙炔的π云相互作用的构型稳定两倍。在 M06-2X/6-311+G(d,p) 水平下计算的最低能量构型(1A)的结合能为 2.91 kcal/mol,与苯乙炔复合物的实验结合能 2.7 ± 0.2 kcal/mol 非常吻合。有趣的是,对于 1,3,5-三氟苯乙炔和冠状苯乙炔复合物,乙炔位于芳环中心上方的 C-H(…)π相互作用不是最低能量构型。对于前一个复合物,最低能量构型(2A)具有 C-H(…)π 相互作用和 C-H(...)F 氢键,而冠状苯乙炔复合物的最低能量结构涉及π-π和 C-H(…)π 相互作用。报告并分析了所有构型的 C-H 伸缩振动频率和频率位移。我们观察到与π云相互作用的 C-H 键伸缩振动频率发生红移。与裸乙炔相比,复合物中最低能量结构的乙炔表现出 C-H 伸缩振动频率的显著红移和相应振动频率的强度变化。我们已经检查了苯、1,3,5-三氟苯、冠状苯和乙炔表面的分子静电势,以解释这里研究的各种复合物的结合强度。