Suppr超能文献

咪唑C-H...O水氢键的从头算量子力学分析及分子力学力场校正

Ab initio quantum mechanics analysis of imidazole C-H...O water hydrogen bonding and a molecular mechanics forcefield correction.

作者信息

Ornstein R L, Zheng Y J

机构信息

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA.

出版信息

J Biomol Struct Dyn. 1997 Jun;14(6):657-65. doi: 10.1080/07391102.1997.10508169.

Abstract

While it is well established that classical hydrogen bonds play an important role in enzyme structure, function and dynamics, the role of weaker, but 'activated' C-H donor hydrogen bonds is poorly understood. The most important such case involves histidine which often plays a direct role in enzyme catalysis and possesses the most acidic C-H donor group of the standard amino acids. In the present study, we obtained optimized geometries and hydrogen bond interaction energies for C-H...O hydrogen bonded complexes between methane, ethylene, benzene, acetylene, and imidazole with water at the MP2-FC/6-31++G(2d,2p) and MP2-FC/aug-cc-pVDZ/MP2-FC/6-31++G(2d,2p) levels of theory. A strong linear relationship is obtained between the stability of the various hydrogen bonded complexes and both separation distances for H...O and C----O. In general, these calculations indicate that C-H...O interactions can be classified as hydrogen bonding interactions, albeit significantly weaker than the classical hydrogen bonds, but significantly stronger than just van der Waals interactions. For instance, while the electronic energy of stabilization at the MP2-FC/aug-cc-pVDZ/MP2-FC/6-31++G(2d,2p) level of theory of a water O-H...O water hydrogen bond is 4.36 kcal/mol more stable than the methane C-H...O water interaction, the water-water hydrogen bond is only 2.06 kcal/mol more stable than the imidazole Ce-H...O water hydrogen bond. Neglecting this latter hydrogen bonding interaction is obviously unacceptable. We next compare the potential energy surfaces for the imidazole Ce-H...O water and imidazole Na-H...O hydrogen bonded complexes computed at the MP2/6-31++G(2d,2p) level of theory with the potential energy surface computed using the AMBER molecular mechanics program and forcefields. While the Weiner et al and Cornell et al AMBER forcefields reasonably account for the imidazole N-H...O water interaction, these forcefields do not adequately account for the imidazole Ce-H...O water hydrogen bond. A forcefield modification is offered that results in excellent agreement between the ab initio and molecular mechanics geometry and energy for this C-H...O hydrogen bonded complex.

摘要

虽然经典氢键在酶的结构、功能和动力学中起着重要作用已得到充分证实,但较弱但“活化”的C-H供体氢键的作用却鲜为人知。其中最重要的情况涉及组氨酸,它在酶催化中常常起直接作用,并且拥有标准氨基酸中酸性最强的C-H供体基团。在本研究中,我们在MP2-FC/6-31++G(2d,2p)和MP2-FC/aug-cc-pVDZ/MP2-FC/6-31++G(2d,2p)理论水平下,获得了甲烷、乙烯、苯、乙炔和咪唑与水形成的C-H...O氢键复合物的优化几何结构和氢键相互作用能。各种氢键复合物的稳定性与H...O和C----O的分离距离之间呈现出很强的线性关系。总体而言,这些计算表明C-H...O相互作用可归类为氢键相互作用,尽管其明显弱于经典氢键,但显著强于范德华相互作用。例如,在MP2-FC/aug-cc-pVDZ/MP2-FC/6-31++G(2d,2p)理论水平下,水分子间O-H...O氢键的电子稳定能比甲烷C-H...O与水相互作用的稳定能高4.36 kcal/mol,而水分子间氢键仅比咪唑Ce-H...O与水的氢键稳定能高2.06 kcal/mol。忽略后一种氢键相互作用显然是不可接受的。接下来,我们将在MP2/6-31++G(2d,2p)理论水平下计算得到的咪唑Ce-H...O与水以及咪唑Na-H...O与水的氢键复合物的势能面,与使用AMBER分子力学程序和力场计算得到的势能面进行比较。虽然Weiner等人和Cornell等人的AMBER力场能够合理地解释咪唑N-H...O与水的相互作用,但这些力场并不能充分解释咪唑Ce-H...O与水的氢键。我们提出了一种力场修正方法,使得该C-H...O氢键复合物的从头算和分子力学几何结构及能量之间达成了极佳的一致性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验