School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
Phys Chem Chem Phys. 2013 Feb 14;15(6):1821-30. doi: 10.1039/c2cp43490c. Epub 2012 Dec 17.
Oxidation of iron surfaces and oxide growth mechanisms have been studied using reactive molecular dynamics. Oxide growth kinetics on Fe(100), (110), and (111) surface orientations has been investigated at various temperatures and/or an external electric field. The oxide growth kinetics decreases in the order of (110), (111), and (100) surfaces at 300 K over 1 ns timescale while higher temperature increases the oxidation rate. The oxidation rate shows a transition after an initial high rate, implying that the oxide formation mechanism evolves, with iron cation re-ordering. In early stages of surface oxide growth, oxygen transport through iron interstitial sites is dominant, yielding non-stoichiometric wüstite characteristics. The dominant oxygen inward transport decreases as the oxide thickens, evolving into more stoichiometric oxide phases such as wüstite or hematite. This also suggests that cation outward transport increases correspondingly. In addition to oxidation kinetics simulations, formed oxide layers have been relaxed in the range of 600-1500 K to investigate diffusion characteristics, fitting these results into an Arrhenius relation. The activation energy of oxygen diffusion in oxide layers formed on Fe(100), (110), and (111) surfaces was estimated to be 0.32, 0.26, and 0.28 eV, respectively. Comparison between our modeling results and literature data is then discussed. An external electric field (10 MV cm(-1)) facilitates initial oxidation kinetics by promoting oxygen transport through iron lattice interstitial sites, but reaches self-limiting thickness, showing that similar oxide formation stages are maintained when cation transport increases. The effect of the external electric field on iron oxide structure, composition, and oxide activation energy is found to be minimal, whereas cation outward migration is slightly promoted.
使用反应分子动力学研究了铁表面的氧化和氧化物生长机制。研究了在不同温度和/或外加电场下,Fe(100)、(110)和(111)表面取向的氧化物生长动力学。在 1 ns 的时间尺度上,300 K 时氧化动力学按(110)、(111)和(100)表面的顺序降低,而高温会提高氧化速率。氧化速率在初始高速后表现出转变,这意味着氧化物形成机制发生了变化,伴随着铁阳离子的重新有序化。在表面氧化物生长的早期阶段,氧通过铁间隙位的传输占主导地位,导致非化学计量的 wüstite 特性。随着氧化物厚度的增加,主导的氧向内传输减少,演变成更化学计量的氧化物相,如 wüstite 或赤铁矿。这也表明阳离子向外传输相应增加。除了氧化动力学模拟外,还在 600-1500 K 的范围内对形成的氧化层进行了弛豫,以研究扩散特性,并将这些结果拟合到 Arrhenius 关系中。在 Fe(100)、(110)和(111)表面形成的氧化层中氧扩散的激活能分别估计为 0.32、0.26 和 0.28 eV。然后讨论了我们的建模结果与文献数据的比较。外加电场(10 MV cm(-1))通过促进氧通过铁晶格间隙位的传输来促进初始氧化动力学,但达到自限制厚度,表明在阳离子传输增加时,保持相似的氧化物形成阶段。外加电场对氧化铁结构、组成和氧化物激活能的影响最小,而阳离子的外向迁移略有促进。