Suppr超能文献

监测臭氧暴露的气道上皮细胞内的氧化还原变化。

Monitoring intracellular redox changes in ozone-exposed airway epithelial cells.

机构信息

Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA.

出版信息

Environ Health Perspect. 2013 Mar;121(3):312-7. doi: 10.1289/ehp.1206039. Epub 2012 Dec 18.

Abstract

BACKGROUND

The toxicity of many xenobiotic compounds is believed to involve oxidative injury to cells. Direct assessment of mechanistic events involved in xenobiotic-induced oxidative stress is not easily achievable. Development of genetically encoded probes designed for monitoring intracellular redox changes represents a methodological advance with potential applications in toxicological studies.

OBJECTIVE

We tested the utility of redox-sensitive green fluorescent protein (roGFP)-based redox sensors for monitoring real-time intracellular redox changes induced by xenobiotics in toxicological studies.

METHODS

roGFP2, a reporter of the glutathione redox potential (E(GSH)), was used to monitor EGSH in cultured human airway epithelial cells (BEAS-2B cells) undergoing exposure to 0.15-1.0 ppm ozone (O(3)). Cells were imaged in real time using a custom-built O(3) exposure system coupled to a confocal microscope.

RESULTS

O(3) exposure induced a dose- and time-dependent increase of the cytosolic EGSH. Additional experiments confirmed that roGFP2 is not directly oxidized, but properly equilibrates with the glutathione redox couple: Inhibition of endogenous glutaredoxin 1 (Grx1) disrupted roGFP2 responses to O(3), and a Grx1-roGFP2 fusion protein responded more rapidly to O(3) exposure. Selenite-induced up-regulation of GPx (glutathione peroxidase) expression-enhanced roGFP2 responsiveness to O(3), suggesting that (hydro)peroxides are intermediates linking O(3) exposure to glutathione oxidation.

CONCLUSION

Exposure to O(3) induces a profound increase in the cytosolic E(GSH) of airway epithelial cells that is indicative of an oxidant-dependent impairment of glutathione redox homeostasis. These studies demonstrate the utility of using genetically encoded redox reporters in making reliable assessments of cells undergoing exposure to xenobiotics with strong oxidizing properties.

摘要

背景

许多外源化合物的毒性被认为涉及细胞的氧化损伤。直接评估外源化合物诱导的氧化应激中涉及的机制事件不容易实现。开发用于监测细胞内氧化还原变化的遗传编码探针代表了一种方法学上的进步,具有在毒理学研究中应用的潜力。

目的

我们测试了基于氧化还原敏感的绿色荧光蛋白(roGFP)的氧化还原传感器用于监测毒理学研究中外源化合物诱导的实时细胞内氧化还原变化的效用。

方法

roGFP2,谷胱甘肽氧化还原电势(E(GSH))的报告者,用于监测暴露于 0.15-1.0 ppm 臭氧(O(3))的培养人呼吸道上皮细胞(BEAS-2B 细胞)中的 EGSH。使用定制的 O(3)暴露系统与共聚焦显微镜耦合,实时对细胞进行成像。

结果

O(3)暴露诱导了细胞溶质 EGSH 的剂量和时间依赖性增加。额外的实验证实,roGFP2 不会直接被氧化,而是与谷胱甘肽氧化还原对正确平衡:内源性谷氧还蛋白 1(Grx1)的抑制破坏了 roGFP2 对 O(3)的反应,并且 Grx1-roGFP2 融合蛋白对 O(3)暴露的反应更快。亚硒酸盐诱导的 GPx(谷胱甘肽过氧化物酶)表达增强增强了 roGFP2 对 O(3)的反应性,表明(氢)过氧化物是将 O(3)暴露与谷胱甘肽氧化联系起来的中间产物。

结论

暴露于 O(3)会导致呼吸道上皮细胞的细胞溶质 E(GSH)显着增加,表明谷胱甘肽氧化还原动态平衡的氧化依赖性损伤。这些研究证明了使用遗传编码氧化还原报告者在对外源化合物具有强氧化性的细胞进行可靠评估中的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c57/3621206/d8ffd5bdb821/ehp.1206039.g001.jpg

相似文献

1
Monitoring intracellular redox changes in ozone-exposed airway epithelial cells.
Environ Health Perspect. 2013 Mar;121(3):312-7. doi: 10.1289/ehp.1206039. Epub 2012 Dec 18.
2
Real-time imaging of the intracellular glutathione redox potential in the malaria parasite Plasmodium falciparum.
PLoS Pathog. 2013;9(12):e1003782. doi: 10.1371/journal.ppat.1003782. Epub 2013 Dec 5.
4
Live Monitoring of ROS-Induced Cytosolic Redox Changes with roGFP2-Based Sensors in Plants.
Methods Mol Biol. 2022;2526:65-85. doi: 10.1007/978-1-0716-2469-2_5.
5
Transient light-induced intracellular oxidation revealed by redox biosensor.
Biochem Biophys Res Commun. 2013 Oct 4;439(4):517-21. doi: 10.1016/j.bbrc.2013.09.011. Epub 2013 Sep 8.
6
Linking oxidative events to inflammatory and adaptive gene expression induced by exposure to an organic particulate matter component.
Environ Health Perspect. 2012 Feb;120(2):267-74. doi: 10.1289/ehp.1104055. Epub 2011 Oct 13.
7
Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes.
J Biomol Screen. 2014 Mar;19(3):379-86. doi: 10.1177/1087057113499634. Epub 2013 Aug 16.
9
Real-time redox adaptations in human airway epithelial cells exposed to isoprene hydroxy hydroperoxide.
Redox Biol. 2023 May;61:102646. doi: 10.1016/j.redox.2023.102646. Epub 2023 Feb 25.
10
Inhibition of glutathione synthesis distinctly alters mitochondrial and cytosolic redox poise.
Exp Biol Med (Maywood). 2014 Apr;239(4):394-403. doi: 10.1177/1535370214522179. Epub 2014 Feb 28.

引用本文的文献

1
GAPDH inhibition mediated by thiol oxidation in human airway epithelial cells exposed to an environmental peroxide.
Redox Biol. 2024 Jul;73:103199. doi: 10.1016/j.redox.2024.103199. Epub 2024 May 17.
2
Monitoring redox stress in human airway epithelial cells exposed to woodsmoke at an air-liquid interface.
Part Fibre Toxicol. 2024 Mar 8;21(1):14. doi: 10.1186/s12989-024-00575-9.
3
Real-time redox adaptations in human airway epithelial cells exposed to isoprene hydroxy hydroperoxide.
Redox Biol. 2023 May;61:102646. doi: 10.1016/j.redox.2023.102646. Epub 2023 Feb 25.
7
Supplementation with omega-3 fatty acids potentiates oxidative stress in human airway epithelial cells exposed to ozone.
Environ Res. 2020 Aug;187:109627. doi: 10.1016/j.envres.2020.109627. Epub 2020 May 11.
8
Through the Looking Glass: Models for Inhalation Toxicology and Interindividual Variability in the Airway.
Appl In Vitro Toxicol. 2018 Jun 1;4(2):115-128. doi: 10.1089/aivt.2018.0002.
9
Long chain lipid hydroperoxides increase the glutathione redox potential through glutathione peroxidase 4.
Biochim Biophys Acta Gen Subj. 2019 May;1863(5):950-959. doi: 10.1016/j.bbagen.2019.03.002. Epub 2019 Mar 5.

本文引用的文献

1
Mitochondrial 'flashes': a radical concept repHined.
Trends Cell Biol. 2012 Oct;22(10):503-8. doi: 10.1016/j.tcb.2012.07.007. Epub 2012 Aug 20.
2
Evaluation of a dithiocarbamate derivative as an inhibitor of human glutaredoxin-1.
J Enzyme Inhib Med Chem. 2013 Jun;28(3):456-62. doi: 10.3109/14756366.2011.649267. Epub 2012 Feb 3.
3
Linking oxidative events to inflammatory and adaptive gene expression induced by exposure to an organic particulate matter component.
Environ Health Perspect. 2012 Feb;120(2):267-74. doi: 10.1289/ehp.1104055. Epub 2011 Oct 13.
4
Measuring E(GSH) and H2O2 with roGFP2-based redox probes.
Free Radic Biol Med. 2011 Dec 1;51(11):1943-51. doi: 10.1016/j.freeradbiomed.2011.08.035. Epub 2011 Sep 10.
5
Role of 4-hydroxy-trans-2-nonenal in cell functions.
Biochemistry (Mosc). 2010 Sep;75(9):1069-87. doi: 10.1134/s0006297910090014.
6
Ozone induces inflammation in bronchial epithelial cells.
J Asthma. 2011 Feb;48(1):79-83. doi: 10.3109/02770903.2010.529224. Epub 2010 Nov 3.
8
Oxidative stress: acute and progressive lung injury.
Ann N Y Acad Sci. 2010 Aug;1203:53-9. doi: 10.1111/j.1749-6632.2010.05552.x.
9
An integrated imaging approach to the study of oxidative stress generation by mitochondrial dysfunction in living cells.
Environ Health Perspect. 2010 Jul;118(7):902-8. doi: 10.1289/ehp.0901811. Epub 2010 Apr 22.
10
Fluorescent protein-based redox probes.
Antioxid Redox Signal. 2010 Sep 1;13(5):621-50. doi: 10.1089/ars.2009.2948.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验